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Preface

This study applied Intel’s artificial neural network hardware, the 80170NX
chip known also as the Electronically Trainable Analog Neural Network (ETANN),
to classify radar emitter systems. This research study concentrated on comparing
simulator results to that of actual hardware implementation for a specific application

using collected data.
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Abstract

This study investigated classification of 30 radar emitters with 16 signal fea-
tures using Intel’s 80170NX chip, the Electronically Trainable Analog Neural Net-
work (ETANN). Software tools were developed to characterize the ETANN sigmoidal
transfer function for use in a custom simulator, known as Neural Graphics. Neural
Graphics operates on a Silicon Graphics workstation. The Intel Neural Network
Training System simulators were used in early experiments, but were found to be
inefficient in training on data used in this research. Using a modified Neural Graph-
ics simulator, single chip and multi-chip experiments were performed to provide
benchmark results prior to performing chip-in-loop training. By maximizing off-chip
training accuracy, the need for on-chip training is minimized and therefore the de-
vice life is prolonged. Several single chip and multi-chip configurations were tried;
the final architecture which produced the maximum on-chip classification accuracy
was a hierarchical network. The maximum on-chip classification accuracy for a sin-
gle chip implementation of 30 classes without chip-in-loop training was 83 percent.

Again without chip-in-loop training, the maximum on-chip classification accuracy

for a hierarchical configuration with the 30-class problem was 87 percent.
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ETANN HARDWARE IMPLEMENTATION FOR
RADAR EMITTER IDENTIFICATION

I. INTRODUCTION

1.1 General Issue

Electronic warfare continues to te a primary focus of Air Force research and
development. From the simple concept of using radar detectors to warn pilots of
possible hostile threats has evolved the idea of identifying those threats, so pilots
may gain the advantage by taking active, evasive action. Artificial Neural Networks
(ANNs), also referred to as neural networks, now make it possible to explore old
ideas of automating emitter identification in cockpits. Because aircraft have limited
space and computing capacity, ANNs may be the ideal solution to radar emitter
identification. This discussion leads precisely to what this thesis addresses, solving

a radar emitter identification problem using ANN hardware.

1.2 Background

An ANN is a model that simulates a biological neural network system; it
may model brain processes or brain capabilities. The word neural was derived from
neuron. A neuron is a nerve cell that is used to process, store, retrieve, and elec-
trochemically manipulate information received from the cell body or input channels,
called dendrites. The human body contains tens of billions of neurons, each linked to
potentially thousands of others through a biological network. Each neuron features
several inputs, but only one output. To »-~_uce an output, the neuron sums the

inputs from the dendrites at a common point and then compares the sum against




a threshold value. If the threshold value is exceeded, the neuron activates a pulse
voltage in the output. Similarly, an artificial neuron may have many inputs, but only
one output. Figure 1 illustrates a biological neuron, and Figure 2 illustrates an arti-
ficial neuron, which is also referred to as a single perceptron proposed by Rosenblatt
in 1959 (29). Tkhe only true similarity between a biological and artificial neuron is
the input/output structure and their activation nature. A parallel combination cf
neurbns constitutes a network layer, and one or more layers defines a neural network.
Two or more layers is also referred to as a multilayer perceptron network. Moreover,
the ANN network nr .y have more than one output, depending on how many decision

functions are associated with the ANN output (27:1-15).

The hardware implementation of a complex ANN model makes use of a mas-
sively parallel interconnected network of perceptrons (the artificial equivalent of a
biological neural network), which interacts in a way similar to a biological nervc as
system. The ANN accomplishes tasks by modeling a biological system; specifically,
the ANN attempts to assign an unknown pattern from the environment into one
of a set of selected classes (supervised method) by emulating the biological neural

network.

Engineers and scientists are applying the ANN to such tasks as automatic tar-
get recognition. As described by Ruck (30), the process of automatic target recog-
nition consists of three stages: segmentation, feature extraction, and classification.
Segmentation is the operation of isolating the target of interest from its environment,
whereas feature extraction invelves processing the data to compute the features that
allow discrimination among different target classes. The classification stage assigns

each input target to a class based on its features.

It has been demonstrated that neural networks can be used to design radar
classification systems on the order of 30 classes with high accuracy. Cameron (5)
demonstrated that using a hierarchical approach to cla=sify 30 classes resulis in

improved system accuracy over that of a straight forward application of one network.
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Using the hierarchical approach, Capt Cameron succeeded in achieving a 96.5 percent
accuracy rate of classifying the radar emitter patterns correctly (5:52). A discussion

on the hierarchical approach used in this research is covered in Chapter 4.

1.8 Problem Statement

The research problem is to implement a simulated neural network from (5)
in hardware and to achieve the accuracy results recorded from simulation. The
hardware used in these experiments is built by the Intel Corporation. The primary
hardware device is the 80170NX chip, an Electronically Trainable Analog Neural
Network (ETANN). In addition to the ETANN chip, Intel built the Personal Com-
puter (PC) interface hardware and software that allows the designer to program the
ETANN chip after simulator training (13:1-3).

Originally, the principal investigator (5) was given 32 classes of radar signals to
implement in an artificial neural network simulator. Two of the classes had too few of
vectors to train effectively; therefore, they were excluded from further experiments,
and thus the problem was further defined as 30-classes. Then the Neural Graphics
simulator, which was coded in the C computer language at AFIT (37), was used to
train on the radar signal emitter patterns. The back propagation training paradigm

was used in Neural Graphics.

Little has been said about the data because the focus of this research is on
hardware implementation. The data used for training and testing the hardware is
real, collected data, intercepted and recorded by the Georgia Technical Research

Institute (GTRI). This data was used in previous experiments (5).

The features of this data were extracted by GTRI and transformed into samples
of data vectors in American Standard Code for Information Interchange (ASCII)
format. Each vector contains 16 elements representing 16 features used for pattern
classification. The vector elements are measured features of the intercepted radar

signals.




1.4

Research Objectives

The primary research objective is to implement an artificial neural network in

Intel’'s ETANN hardware to classify the GTRI radar emitter data. In addition to

the primary research objective, the following sub-objectives will be accomplished:

1.5

. Minimize the processing time and maximize the classification accuracy. This

sub-objective will require setting up experiments to prune the network of bad
data and to consider chip-in-loop training, which requires using the ETANN
chip to train in real time. Minimizing the processing time implies using as few

processing layers as possible.

. Develop a technique to load training weights from the Neural Graphics simu-

lator (37) to Intel’s Neural Network Training System (iNNTS). This technique

will require transfer of the normalized data as well as the weights.

. Estimate hardware processing time to make a classification. The processing

time in hardware is important information that will indicate how close to real

time the processor functions.

. Compare resolution differences between the hardware device and simulator.

Resolution is important because information is usually lost when going from
simulator to hardware, which may affect network performance in classifying

the radar emitter feature data.

. Calculate an implementation loss factor. The loss factor is a loss associated

with hardware implementation when going from theoretical to actual results.
In other words, the loss factor is the difference between theoretical (software

simulation) and actual results (hardware implementation).

Scope

This research focuses on a single application of classifying 30 radar emitters in

ANN hardware based on discrimination of feature vectors. To narrow the scope, this




research is exclusively limited to using Intel's ETANN chip as the neural network
hardware device. The simulators used in this research are AFIT’s Neural Graphics
(37) and iBrainMaker (3). The data used in training were limited to a fixed number

of feature vectors (a pool of 8,469 vectors).

1.6 Chapter Outlines

In chapter 2, a literature review was accomplished to look at all the information
necessary for understanding the radar emitter classification problem and hardware
solution approaches. Chapter 3 presents a detail map of the methodology used in
the forming of a solution to the research problem. Chapter 4 presents the findings
of the research problem and sub-objectives. Finally, Chapter 5 presents conclusions

and recommendations.

1.7 Summary

The purpose of this research is to solve a 30-class radar emitter identification
problem usin.g Intel’s neural network hardware device, the ETANN chip. In addition,
a series of tests and comparisons with simulation results were performed in an effort

to establish a theoretical versus practical implementation loss factor for this network.
| This loss factor is a measure by which future simulations can be adjusted for accuracy.
Two simulators were used for comparison of training results. The degree of success
of this research will help determine future Air Force developmental work in neural

network hardware.




II. LITERATURE REVIEW

2.1 Introduction

This chapter reviews literature pertinent to understanding the radar emitter
classification problem and solution approaches. Below are the two topics discussed

in this chapter:

o Radar Emitter Classification

e Neural Network Hardware

2.2 Radar Emitter Classification

Artificial neural networks are rapidly becoming the favorite algorithm in emit-
ter identification. The speed at which neural networks operate and the robustness
of the network architecture make them attractive to electronic warfare engineers.
This review of radar emitter classification is intended to document a baseline of
parameters achieved in neural network simulations, so that the researcher can com-
pare hardware implementation results of the Electronically Trainable Analog Neural

Network (ETANN) to that of simulations in general.

Radar emitter classification results until now have only been documented based
on simulation results. Thus far, the best simulation results of a large-class emitter
identification classifier were achieved by Capt Cameron at the Air Force Institute
of Technology (5). His best test results for a 30-class, 16-feature problem was a 96

percent classification accuracy using a hierarchical network approach (5:52).

In a medium-class problem, Capt Zahirniak at the Air Force Institute of Tech-
nology used a kernel classifier (radial basis function) to classify radar emitters. His
network was configured for six features on the input and ten classes on the output.

Capt Zahirniak achieved an 86 percent classification accuracy (43:5-17).




Willson describes the use of an artificial neural network (ANN) for classify-
ing radar signals collected by a passive receiver (42). He used an ANN employing
a multilayer perceptron network using back propagation training to classify radar
emitters. Willson’s network consisted of six input features and fourteen classes on
the output. Using monopulse radar data as features for the input of the network,
Willson compared the ANN employing a multilayer perceptron to a template-based
technique and a K-nearest neighbor classifier. He achieved an average of 94 percent
correct classification using an ANN, an average of 86 percent correct classification
using a K-nearest neighbor algorithm, and an average of 74 percent correct classifi-

cation using a template match.

At the Georgia Tech Research Institute, Howitt used a standard feed-forward
network with three input features (RF, PRI, and PW), eight hidden nodes, and
ten emitter classes to test the performance of an ANN using the back propagation
training algorithm (11:213). Howitt's simulator results for four independent tests
using testing data sets (data not shown to the networks before) developed for each

test showed an average correct classification of 99.9 percent.

Standard feed-forward networks suffer from several drawbacks. First, network
training size is directly related to the size of the netwsrk. In other words, as the
number of emitter classes increase, the rate at which the network converges decreases
(slower convergence). Second, when a network is modified by adding or deleting
emitter classes, it has to be retrained (the entire network of all classes). To mitigate
these drawbacks, Howitt developed an alternate method to the standard feed-forward

network, called the piecewise training network.

Howitt divided the standard feed-forward network described above into two
networks, each with three input features as before, three hidden nodes instead of
eight, and five output classes instead of ten. The networks were trained individually
and “glued” into one final network with two additional hidden nodes. After com-

bining this network, an additional training phase with the entire training data set




Table 1. Radar Emitter Classification

Classes | Features | Type | Result | Researcher
10 3 MLP | 99% Howitt
10 6 RBF | 86% | Zahirniak
16 6 MLP | 94% Willson
30 16 MLP | 96% | Cameron

is required (11:214). For the four simulator tests performed, Howitt found results
almost identical to the standard feed-forward network (99 percent average correct

classification).

According to Howitt, the advantage of using the piecewise network in this
example is that the number of interconnections were decreased from 104 to 74, rep-
resenting a 30 percent reduction in the number of weights. Fewer weights means less
training time required. Moreover, dividing a large network into sub-networks im-
proves convergence time (for separable classes). Last and most importantly, adding
or deleting classes can be done more efficiently. For example, the entire network does
not require retraining when adding or deleting one class. By retraining only a sub-
network in which one modifies an emitter class and then retraining with the “glue”
" neurons in the entire network, one saves having to retrain the other sub-networks.
This method could result in a substantial savings in time when considering large

networks.

2.2.1 Summary Table 1 is a summary of the results in current literature
found on radar emitter classification using neural networks. In the table, RBF is

short for Radial Basis Function, and MLP is short for Multi-Layer Perceptron.

2.8 Neural Network Hardware

2.8.1 Introduction Hardware implementations of Artificial Neural Networks
(ANNs) has been a growing field for the last couple of years. Several hardware

10




models of ANN implementations, also referred to as neural computers, now exist for
a number of different training algorithms and network types. This section presents

a brief survey of neural network hardware found in current literature.
2.3.2 Survey of Current Neural Computing Hardware

2.3.2.1 DTCNN Chip: Harrer and others have demonstrated an effi-
cient architecture for an analog realization of Discrete-Time Cellular Neural Net-
works (DTCNN), which take advantage of binary outputs and simple interconnec-
tions of several chips. Because this chip was only recently developed, no test per-
formance data of actual realizations have been reported using this chip; however,
the chip is being considered for applications such as discrete convolution, connected

component detection, concentric contouring, and oscillation (10:466).

2.3.2.2 Neurocomputer Chip: Lont and Guggenbuhl built the Neuro-
computer chip that contains 18 neurons and 161 synapses in three layers and pro-
vides 16 inputs and 4 outputs (18:457). The complete neural computing system
consists of a personal computer for training the network off-chip, an interface card

for downloading weights to the chip, and a Neurochip (18:463).

Experiments with the Neurochips have been limited so far; however, the Neu-
rocomputer chip has been tested with a simple pattern-recognition application. It
was found that at best, training error can be reduced to a linear error of 11 percent.
In portability tests, the authors found that each chip has to be retrained individu-
ally because no two chips are exactly the same (18:463). The propagation time delay
from the input to the output of each chip is equal to 4 usec. The overall computa-
tion rate (weights times inputs) is 40.25 million connections per second. Lont and
Guggenbuhl state that this computation rate is not the effective computation rate

because the weights must be refreshed from time to time (18:464).

11




2.8.2.83 ANNA Chip: Sackinger and others designed, fabricated, and
tested a reconfigurable ANN chip, called ANNA (for Analog Neural Network Arith-
metic and logic unit) (31:498). The ANNA chip is optimized for locally connected,

weight-sharing networks and time-delay neural networks.

The ANNA chip implements 4096 synapses with 6 bits of resolution for each
state (input/output of the neurons). All input and output of the chip are digital,
whereas internally the chip uses analog computing. The advantages of using the
ANNA chip over most other implementations are high synaptic density, high speed,

low power requirements, and ease of interfacing to a digital system (31:498).

The processing speed on the chip, from start to finish, takes about 200 nsec
(four clock cycles). The ANNA chip is configured for weight vector sizes of 64, 128,
and 256, which also correspond to the number of synapses per neuron (31:498). For
the maximum configuration size of 256 synapses per neuron, the chip can evaluate a
maximum of 10 billion connections per second. For practical applications, however,
the speed will be lower because some applications will not make full use of the ANNA
chips’s parallelism (31:499).

The locally connected, weight-sharing neural network (the neural network de-
signed on the ANNA chip) has been successfully used for optical character recog-
nition of both digits and letters, for character recognition from touch screens, for

image segmentation, and for speech recognition (31:498).

2.3.2.4 TInMANN Chip: Melton and others have designed the archi-
tecture, operation, and implementation for The Integer Markovian Artificial Neural
Network (TInMANN) chip, which features a massively parallel all-digital, stochastic
architecture (21:375). The TInMANN uses a modified Kohonen algorithm to simplify
the computations on chip. The integer Markovian learning algorithm replaces mul-
tiplications and complex function evaluations with simple additions, comparisons,

and random number generation (21:377).

12




The current implementation model uses one neuron per chip, which can take
vectors up to six dimensions at 10-bits precision. This model is capable of pro-
cessing up to 195,000 three-dimensional training vectors per second (21:382). The
TInMANN was designed to be flexible and capable of being expanded to larger
systems. The primary drawbacks with the TInMANN chip are the low level of in-
tegration (only one neuron per chip), the higher power and reliability problems as
compared to other Very-Large-Scale-Integration (VLSI) chips, and the slow speed of
the network (21:383).

2.8.2.5 ETANN Chip: Intel has developed an Electronically Trainable
Analog Neural Network (ETANN), the 80170NX chip. The 80170NX chip is an
electronic device that performs ANN functions in hardware, and is currently the

most capable ANN device developed so far.

The ETANN chip is a 64-neuron, 10,240-synapse electronically trainable paral-
lel data processor, known as an analog neural network. It is configured for mapping
128 inputs, of which 64 are feedback inputs, into 64 neuron outputs. The ETANN
chip features a low power requirement (5-volts operation), a resolution of 7 to 8 bits,
a dense 208-pin PGA (Pin Grid Array) package, and a non-volatile weight storage

~ capability (minimum data retention lifetime of 10 years) (13).

A single ETANN chip can perform more than 2 billion multiply-accumulate
operations (connections) per second. Moreover, processing throughput takes about
6 usec (or 3 psec per layer), near real-time for pattern recognition applications. By
interconnecting eight chips, systems can achieve more than 16 billion connections
per second, a performance level that exceeds most supercomputers. Hence, this ca-
pability makes the ETANN chip a prime candidate for real-time pattern recognition
and signal processing applications (13).

Mumford, Andes, and Kern have designed a neural network processing system

that incorporates an ANN as a subsystem in a layered hierarchical architecture

13




(22:423). The ANN hardware used in the system design is Intel’'s ETANN chip.
The Mod 2 Neurocomputer, which is being built at the Naval Weapons Center, is
designed to be a neural network processing system, using separate individual neural

networks as subsystems in a flexible, modular architecture (22:423).

The Mod 2 Neurocomputer is a reconfigurable, general-purpose neural pro-
cessor that can be easily tested in an interactive manner and integrated with an
imaging sensor for real-time integrated processing demonstrations (22:424). The de-
signers have not completed hardware construction at this time. When completed,
the Mod 2 Neurocomputer will be a demonstration of ANN hardware integration into

a system designed to support parallel processing of image data at real-time rates.

2.4 Conclusion

This chapter reviewed literature on the topics of radar emitter classification
and neural network hardware. The best radar emitter classification accuracy for
a large-class problem was achieved by Capt Cameron at AFIT. He achieved a 96
percent classification accuracy on a simulator using the same data that is to be used

in this research.

A survey of neural network hardware covered five newly developed neural com-
puter devices: the DTCNN chip, the Neurocomputer chip, the ANNA chip, the
TInMANN chip, and the ETANN chip. This survey concluded with an example of
a system integration using Intel’'s ETANN chip. Some of the chips are still in the
construction phase and have not been tested, whereas others have undergone limited
testing. Besides being the oldest device surveyed, the ETANN chip remains as one

of the most capable chips in use today.
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III. METHODOLOGY

8.1 Introduction

This chapter is divided into three sections: ETANN description and theory
of operation, phase one research, and phase two research. Each phase of research
covers tests and analysis that require development of software tools and procedures

for implementing the ETANN device for radar emitter classification.

Phase one research tests require performance evaluations of computer simu-
lations, hardware characterizations, and network analysis of a 16-feature, 3-class
radar emitter identification problem. Phase two research requires solving several 16-
feature, multi-class radar emitter identification problems in hardware—some of the
same problems Capt Cameron solved in simulation (5:18). In phase one research, two
computer simulators are used for off-chip training; they are briefly discussed below.

Phase two research uses only one simulator for the final hardware implementation.

8.1.1 Software Simulators The two simulators used in this research are Neu-
ral Graphics (37)(38) and iBrainMaker (3). Each simulator is used for a comparison

of speed and accuracy.

The Neural Grapnics simulator was developed by Greg Tarr and was used
in his doctoral dissertation for research and modelling of neural networks. Neural
Graphics implements a neural network model by using a data file containing both
training and test vectors, also known as training and test patterns. Neural Graphics
features several paradigms for training various kinds of networks. Its basic back
propagation paradigm was modified to emulate the ETANN transfer function and is
used in this research (see Appendix F).

The Neural Graphics simulator provides several measures of retwork accuracy

while performing the classification task. Most importantly, it measures a percentage
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right and good for both training and test data, which are updated according to the
number of iterations set in the screen update. It is advised that the updates be
set to reflect training epochs, where one epoch is equal to the number of training
vectors in the data file that contains both training and testing vectors. The term
right classification refers to one in which the correct output node value is greater
than 0.9 and all other nodes have values less than -0.9. The less strict good measure
of classification is defined as the result from a maximum pick and is used throughout
this thesis, termed the percentage correct Note: These values were later changed to
0.89 and -0.94 for emulation of the ETANN device, enhancement of training, and

reduction of total error (more about this in Chapter 4).

The BrainMaker simulator (v2.02), which was developed by California Sci-
entific, is the only commercial simulator used in this research. The iBrainMaker
is the Intel version of BrainMaker adapted for interfacing with the ETANN chip
programming software, known as Intel’s Neural Network Training System (iNNTS).

3.2 ETANN Chip Description

Intel developed an Electronically Trainable Analog Neural Network (ETANN),
the 80170NX chip. The ETANN chip is a neural computing device that performs
ANN functions in hardware and is the primary device used in this research. A brief

description of the ETANN follows below.

The ETANN chip is a 64-neuron, 10,240-synapse electronically trzinable paral-
lel data processor, known as an analog neural network or analcy neural computer. It
is configured for mapping 128 inputs, of which 64 are feedback inputs, into 64 neuron
outputs. The ETANN chip features a low power requirement (5-volts operation), a
weight resolution of 7.5 bits (20)(about three decimal places of accuracy), a process-
ing resolution of 6.5 bits (20) (between two and three decimal places of accuracy),
a dense 208-pin PGA (Pin Grid Array) package, and a non-volatile weight storage

capability (minimum data retention lifetime of 10 years) (13).
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A single ETANN chip can perform more than 2 billion multiply-accumulate
operations (connections) per second. Moreover, processing throughput takes about
6 usec (or 3 usec per layer) for a two layer network, which is near real-time for many
pattern recognition applications. By interconnecting eight chips, systems can achieve
more than 16 billion conicections per second, a performance level that exceeds most
supercomputers. Hence, this capability makes the ETANN chip a prime candidate

for real-time pattern recognition and signal processing applications (13).

8.2.1 ETANN Theory of Operation The ETANN chip was designed so that
most “learning” is performed off chip. Off-chip learning maximizes flexibility as well
as speed and enhances the chip’s life by reducing on-chip learning time (3:19-8).
Chip-In-Loop (CIL) training is performed on the chip after the network has already
been trained by the simulator to peak performance. CIL is used to compensate for
chip variations and loss of resolution when going from simulator to chip. This process

of CIL training is the last step before completing the training process.

The ETANN chip’s normal operation can be described as Parallel Distributed
Processing (PDP), whereby each of the 64 neurons implements the following function
(13:7):

Output(U;) = Sigmoid{)_ Weight(w;;)Input(z;) + > BIASx}
j k

2
14 cz(cynaplic contributions)

(1)

where i equals the neuron number, j equals the number of inputs to neuron 7, and k
equals the number of biases to neuron i. Although the ETANN chip has 16 bias units
per neuron, only biases 0 through 6 are used in normal chip operation. Bias units
10 through 15 are used by the iNNTS software for zeroing the sigmoidal response of

neurons.
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Figure 3. ETANN Block Diagram (13:2)

The equation above represents the inner product operation that is “squashed”
by a sigmoidal transfer function. Figure 3 illustrates a block diagram of the ETANN
chip. There are 32 fixed-input bias weights and 128 variable input weights that
comprise 160 synapses per neuron. Each neuron produces a single scalar output

(13:8).

The ETANN chip’s processing resolution of the analog inputs and outputs is
greater than or equal to 6 bits (about two to three decimal places of accuracy).
Typically the weight resolution is at about 7.5 bits (or about three decimal places of
accuracy). At worst over a lifetime of 10 years, the processing resolution would be

greater than or equal to 4 bits. If the bake/re-training method is used as described
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in (13), the worst processing resolution over a lifetime of 10 years would be greater
than 6 bits. The bake/re-training method process involves baking a chip in an oven
heated to 250°C for 24 hours and then re-training it. According to Intel, the bake/re-
training method significantly improves the ETANN weight retention over extended

periods of time.

The weights on the ETANN chip are stored as analog transconductance values.
Each synapse produces an analog output current from an analog input voltage and
a stored weight voltage. The currents generated by each of 160 synapses along a
“dendrite” are summed to form an input to a neuron. This sum of currents is then
converted to a voltage and used to activate a sigmoid function, which has a voltage-
controlled gain. When in the 128-input mode, the input and feedback arrays are

active and the output corresponds to the sum of their two dot products.

Figure 4 illustrates the synapse operation on the ETANN chip. Each synapse
contains a multiplier and a stored weight, which are used to calculate one product
with an input. All the single products are summed from other synapses to produce

the dot product (13:9).

3.2.1.1 ETANN Chip Processing Configurations Figure 5 illustrates sin-
gle ETANN chip processing and shows two basic configurations: (a) a configuration
where 64-dimensional input vectors are directly mapped into 64-dimensional output
vectors, and (b) a configuration where 128-inputs are mappec into 64 outputs by
multiplexing the analog input pins Jo—/s3 to the feedback array. Pin A,, determines
the mode that the ETANN chip is in, either multiplex mode or direct mode.

Figure 6 illustrates two more chip configurations: (a) a two-layer processor,
and (b) a Hopfield network. These configurations are also possible with a single

ETANN chip. Several other configurations are published in (13).
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Figure 4. ETANN Synapse Implementation (13:9)
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3.2.1.2 ETANN Multi-Chip Processing Configurations Intel provides
two basic multi-chip processing configurations: 1) Direct Pin Interconnect, or 2) Bus
Interconnect. The more straightforward method is direct pin-to-pin because no mul-
tiplexing is required. Figure 7 illustrates both multi-chip configurations. Although
direct pin-to-pin is simpler, bus interconnection provides more flexibility. Bus inter-
connection, however, has two drawbacks: 1) data can be moved only in 64-neuron

blocks, and 2) multiplexing is slower than direct pin-to-pin due to clocking.

3.2.2 ETANN Transfer Function Characterization Intel published the fol-
lowing sigmoidal transfer function characteristics that simulate the ETANN chip at
what Intel termed as typical operating conditions (for binary outputs): Vgary = 5V,
Vrero = Vreri = 1.4V, for 64 input operation (13:27). Vgasn sets the gain of the
device sigmoid; it can essentially change the sigmoid from a linear function over the
input range to a step function at the high end (4:9). Vggr, and Vrgr; define the

null voltage levels independently for inputs and outputs.

2
Neuron Qutput = ———=—-1 2
P 14 e 8 ziwi @)
Intel’s more accurate model (for binary outputs) that includes roll-off due to

large input and weight magnitudes as well as output range limitations is shown below

(13:27).

1.8
1+ 802 =i(12~0227)wi(1.5-05i?)~BIAS) -

Neuron Output = 0.9 (3)

where z; are the input values and w; are the weight values. Inputs are constrained

between ~1 < z; < 1. Weights are constrained between —2.5 < w; < 2.5. For
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non-binary output operation, Intel has not derived an accurate sigmoidal transfer

function, which is the impetus for characterization experiments.

Figure 8 illustrates the neuron output transfer characteristics versus the sum-
ming current and Vgarn at Veer, = 1.4V. Each of the curves represents the neuron

output given a particular Vg4in value.

The Neural Graphics simulator was configured with the transfer function in
Equation 2, but the network failed to train properly. When the weights were exported
from Neural Graphics and downloaded on the ETANN chip, the result was poor
classification. The cause of this discrepancy was not clear until the discovery that
the Vg arw for the published transfer function was set at 5.0V (used for binary output
operation only), whereas the Vg 4y for normal sigmoid operation on the ETANN
is set to 3.30V. Consequently, the operating sigmoidal transfer function was not

accurately known for a Vgany = 3.30V.
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According to (3), iBrainMaker uses a lookup table as opposed to a pure math-
ematical transfer function to emulate the ETANN sigmoid. A transfer function was
extrapolated by the researcher from the menu information given in the program.
Given in the menu are the high, low, and gain values for the sigmoidal function.
Using this information, the look-up table (resolution unknown) probably emulates

the following sigmoidal transfer function:

1.765
+e 1.0 E(:ynap!ic contributions)

tBrainMaker Neuron Qutput = I - 915 4)

Note: The iBrainMaker sigmoidal transfer function was extrapolated from the high,
low, and gain values after performing independent characterization experiments in

this research (see Chapter 4 results).

Researchers who desire to interface their own custom simulator with the ETANN
hardware are encouraged to characterize the ETANN sigmoidal transfer function
through experimentation. Chapter 4 presents a method used in this research to
characterize the ETANN sigmoidal transfer function along with findings from this
research. It's worth mentioning here that chip-in-loop training if used excessively,
decreases the life of the chip (3); therefore, application designers should optimize

training off-chip so as to minimize on-chip training.

8.8 Phase One Research

The purpose of phase one research was to get software and hardware tools
working to solve a small network problem, and then use the knowledge learned from
phase one to solve more complicated problems in phase two. Phase one research was
essentially a developmental step to solving the thesis problem as outlined in Chapter

1.
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The test network constructed for hardware implementation consisted of 16
features and 3 classes. The number of feature vectors used in phase one research
was 600. This number ensured that Foley’s rule was not violated. Foley's rule states
that the number of training vectors per class should be greater than three times the
number of features (27:61). When this criteria is met, the observed error rate on
the training data is a good predictor of the network error rate on an independent
set of test data. As long as the total number of vectors per class is greater than 48
for a given 16-feature training set, Foley’s rule will not be violated. From the total
training set of 600 vectors for this test problem, each class had 200 vectors, which

easily satisfied Foley's rule.

3.3.1 Egquipment Required The required equipment for this research included
a Silicon Graphics workstation for running the Neural Graphics software simula-
tions and Intel’s Neural Network Training System (iNNTS) for interfacing with the
ETANN chip. The iNNTS includes an Intel 486 personal computer, a Generic Pro-
grammer Interface (GUPI), a Personal Computer Personal Programmer (PCPP)
board which links the PC to the GUPI, an 80170NX adapter that connects the
ETANN chip to the GUPI, and a software simulation program to interface with iN-
NTS (iBrainMaker). The data for training and testing the ANN was provided by
the Georgia Tech Research Institute (GTRI), Atlanta, Georgia.

3.3.2 Software Development GTRI supplied the data in an ASCII code for-
mat for this research; however, the file format was incompatible with the simulator
formats used in this research. Consequently, the GTRI data had to be reformatted
for each simulator, shuffled in a file, and statistically normalized.

This task was broken down into three steps:
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1. Transform the GTRI data into Neural Graphics and iBrainMaker formats.
Two C programs were written to accomplish this first step and are included in

Appendix D: “gtritong.c” and “gtri_to_bm.c”.

2. Shuffle the lines of vectors for both Neural Graphics and iBrainMaker formats.
Two C programs were written to accomplish this second step and are also

included in Appendix D: “shuffie.ng.c” and “shuffle.bm.c”.

3. Statistically normalize the data. The type of normalization used was a normal
Gaussian distribution that was “squashed” (between -1 and 1). The ETANN
chip must be trained and tested by data dynamically normalized between -
1 and 1. Two C programs were written to convert the data to two simulator
formats discussed previously and are also included in Appendix E: “norm.ng.c”

and “norm.bm.c”.

3.3.8 Procedure The network design procedure is basically a seven-step pro-
cess of working through a logical description of the problem to be solved. In phase
one, the problem was to characterize a 16-feature, 3-class problem. The first step
in the design process is to determine whether the network is to predict, generalize,
or recognize. From the research problem presented in Chapter 1, the network was
supposed to recognize radar emitters. The second step requires a designer to choose
information that will make good features for recognition . GTRI performed this step

and the following step, which was to get lots of data.

Generally, the more data, the better the predictor, generalizer, or recognizer.
In some cases, too much data will overwhelm the network. A good method of
determining over training is to plot the total error for the network versus the number
of training iterations or epochs. When the the curve begins to reverse direction

(higher error), it is time to stop training.
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The next step is to build the network. When building a feed-forward network,
there are two things needed to make the network. One needs samples of input data

(training vectors) and to know the desired results.

Two things are needed to make a network: a network definition and a collection
of training vectors (34). A network definition consists of assigning a number of input
nodes to a number of hidden nodes and a number of output nodes. The assigning of
input nodes and output nodes is problem dependent. The assigning of hidden nodes
is problem and data dependent. If the problem is linearly separable, then hidden
nodes are not necessary. The goal is to train effectively with as few hidden nodes as

possible, so as to minimize the number of computations in the network.

After building the network comes training the network. Training a network
is more an art than a science. Adjusting learning parameters such as momentum,
learning rate, and tolerance all become factors in how fast a network will converge,

if it ever does.

Testing the network follows training the network. A percentage of the data
is always saved as testing data. Generally, 10-20 percent of the total number of
vectors is sufficient to test the network. It is important to show the network data
that it has not seen before, because only then will one know if the network is a good
predictor, generalizer, or recognizer. The last step in this process is running the
network, presenting it with new input data, and gathering usable results. At this

point, one has completed the seven-step design process.

8.4 Phase Two Research

In phase two, a solution to the main problem of characterizing 30 radar emitters
in hardware was the focus of research and analysis. Using what was learned in phase

one, the task was simplified to that of using the same basic tools and procedures.
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3.4.1 Eguipment Required The required equipment for phase two research
was the same as that described in phase one with the addition of using the ETANN
Multi-Chip Board (EMB) for multi-chip prototyping. The data for training and
testing the networks in phase two were an extension of what was used in phase one,

which included all 30 classes.

3.4.2 Software Development Software developed in phase one research was
extended in phase two for construction of larger networks. The programs used in
phase one were modified to work in phase two. The main difference in the programs

is the handling of more classes and patterr vectors.

3.4.8 Procedure The procedures for designing an artificial neural network are
basically the same as those discussed in phase one, but the problem was much more
complicated by the fact that the number of classes was increased. Capt Cameron
published a baseline of test findings that are used here as a comparison witi: hardware

implementation results (5).

3.4.4 Baseline Tests Capt Cameron performed a series of experiments with
the Neural Graphics simulator to provide a baseline against which to compare ex-
perimental results. Accordingly, the number of classes per data file and the number
of vectors per class were both varied as widely as possible. In addition, the class
numbers were reassigned to ensure a random combination of classes. The transfer
function used in Cameron’s simulation was a sigmoidal function equal to 1/(1+¢e~?)
over the interval [0,4+1]. The ETANN chip is characterized by another sigmoidal
transfer function, which will be discussed in Chapter 4. The baseline of experimen-

tal results is included here with note of the following information:

e Classes: randomly selected, numbers as indicated in Table 2
e Training vectors: as indicated in table

e Test vectors: 25 per class
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Table 2. Baseline Testing (5:18)

Training Percentage Correct (Test/Train)
Vectors | Iterations Number of classes
(per class) | (x 1000) 8 14 20 26 30
25 10 96/98 | 96/95 | 84/88 | 84/83 70/70
25 20 97/100 | 96/98 | 88/91 | 88/89 87/89
25 30 98/100 [ 96/99 | 91/94 | 90/91 88/90
50 10 96/99 | 94/96 | 90/92 | 88/90 82/80
50 20 96/99 | 95/98 | 89/92 | 92/94 90/92
50 30 |95/100 | 95/99 | 91/96 | 92/95 89/92
75 10 96/97 | 97/97 | 86/88 | 82/83 insuf. data
75 20 97/99 | 97/98 | 89/92 | 92/93 insuf. data
75 30 97/99 |98/98 | 91/94 | 92/93 insuf. data
100 10 | 98/100 | 96/97 | 87/90 | 78/79 insuf. data
100 20 98/100 | 97/97 | 92/93 | 89/90 insuf. data
100 30 98/100 | 97/98 | 91/95 | 92/93 insuf. data
125 10 98/99 | 96/96 { 90/91 | 76/77 insuf. data
125 20 98/99 | 96/98 | 90/91 | 88/90 insuf. data
| 125 30 | 99/100 | 97/98 | 93/95 | 91/92 insuf. data

e Hidden nodes: 16
e Iterations: as indicated

e Special note: some classes have too few vectors; thus this is why there are

insufficient data entries

In Table 2, it is evident that classification accuracy increases as the number
of training vectors increase, and the accuracy decreases as the number of classes
increase, as expected. Accuracy generally increases as the number of iterations
increase, but the effect is more pronounced for runs with twenty or more classes.
This result is expected since the larger networks had to be trained with more vectors.
The maximum baseline accuracy recorded for a single network, 30-class problem
is 90 percent. Of course, this result is not Capt Cameron’s best result. Using a
hierarchical method, he achieved a 96 percent accuracy with an 18(top)/12(bottom)

split of classes in 8,469 test vectors representing half of each class (5).
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8.5 Conclusion

This chapter has given the reader a description of the ETANN chip, a synopsis
of phase one and two research objectives, and a development plan for software tools
and procedures needed for implementing a neural network device to solve a radar
emitter identification problem. In addition, a baseline of experimental results from

(5) was included here as a bench-mark for device implementation.
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IV. RESULTS

4.1 Introduction

This chapter presents the experimental results for the problems that were dis-
cussed in Chapter 1. Phase one research findings include the sigmoidal transfer
function characterization results, simulator test comparisons, and hardware imple-
mentation tests. Phase two research findings include single chip and multi-chip

implementations using Intel’s ETANN Multi-chip Board (EMB).

4.2 Phase One Research Findings

4.2.1 ETANN Sigmoidal Transfer Function Characterization Ezperiment The
general procedures for the ETANN sigmoidal transfer function characterization ex-

periment are outlined as follows:

1. Interface with Intel’s Neural Network Training System to perform read and

write functions on the chip’s inputs and synapses.

2. Prepare the ETANN device for programming by using the “prepare chip” com-
mand in iNNTS—use the following settings: Vganv = 3.3V and Vgyepi =
Vrero = 1.5V, 64-input operation, number of initialization biases = 9, and

weight precision set to 0.042.

3. Perform a series of tests on a number of available chips (eight were used for this
experiment) over a range up to the maximum input values (input values = -1.0,
-0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0) and weight values (weights values=
-2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5) in order to calculate the
average ETANN chip response.

4. Write input values to a single ETANN neuron with varying numbers of inputs

(e.g., 1, 2, 16, and 32).
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5. Calculate the average hardness parameter (a sigmoid gain coefficient) for each
experiment of varying inputs (hardness parameter equals eight in Intel’s char-

acterization equations).

6. Plot activation values versus output values to characterize the sigmoidal trans-

fer function of the ETANN chip.

7. Write a program to calculate the mean-square-error (MSE) versus the hardness
parameter changes, and plot the results for various number of inputs to a single

neuron.

8. Develop a mathematical model for the transfer function, and code the function

in Neural Graphics (or your favorite simulator).

9. Train a network using a simulator with the newly characterized sigmoidal trans-
fer function, and then download the weights to an ETANN device for on-chip

testing.

4.2.2 ETANN Sigmoidal Transfer Function Characterization Findings Pro-
gramming in C was necessary for weight format conversion between Neural Graphics
and Intel’s Neural Network Training System (iNNTS). In addition, several C pro-
grams were written to analyze and process data collected from iNNTS; a sample of

these programs may be found in Appendix G.

Figure 9 illustrates a data fit to the sigmoidal transfer function, which was
characterized by averaging data collected from eight ETANN chips. In each of the
plots, the x-axis is called the activation, and the y-axis is called the output. The
activation represents a sigmoidal function acting on the summation of all inputs
multiplied by associated weights plus biases. The biases in this experiment were set
to zero during the prepare chip step. The inputs were written to a single neuron
(all tests were performed on a single neuron) in incremental steps (input values =
-1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0). The weights were changed over a

range of 11 values from maximum negative to maximum positive values (weights
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values= -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5). For example, the first
weight value chosen, -2.5, was fixed and then the inputs (depending on how many
were selected for that particular test) were written to a single neuron, incrementing
through the entire range of nine input valves. Then the weight was changed (set to
-2.0, the next value). The inputs were written to a single neuron again, incrementing

through the entire range of nine values. This process was repeated for all 11 weight

values.

Additionally, each plot in Figure 9 shows the result of a particular test (testl,
test2, test3, and test4 as labeled on the plot headings). Testl represents a single
input to neuron zero of each of the eight ETANN chips. Test2 represents two inputs
to neuron zero of each of the eight ETANN chips. Test3 and test4 represent 16 and
32 inputs respectively to neuron zero in each of the eight ETANN chips.

For each test, a different hardness parameter was found by searching for the
minimum MSE over a range of various hardness parameter values between zero and
nine. Table 3 shows the hardness characterization experiment results for a Vgainv =
3.3V and a Vrer, = Vrpri = 1.5V (64-input operation). For each activation value,
a numerical output was automatically measured and recorded in a data file along
* with the summation of inputs multiplied by the weight value (sum of products),
which was fixed for the entire range of inputs. This process was repeated until all 11
weight values were used. The plots in Figure 9 illustrate activation versus output (99
points in tests one and two and fewer in three and four due to limiting of the x-axis
to [-8:8]). The averaged data represents the average activation response from eight
ETANN chips for the nine input values and 11 weight values. Tests three and four
results show erratic behavior near zero activation values (see plots C and D). The
behavior is a reaction to changing weight values (over the 11 values mentioned above)
with zero (or near zero) input values. This erratic behavior might be explained by
noting that as more inputs are added to a neuron, a larger current is drawn and thus

the transfer function characteristics change—modelling such change is difficult if not
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Table 3. Hardness Characterization Results

Number of Hardness
Ezxperiment | Neuron Inputs | MSE | Parameter
1 1 0.00412 1.7
2 2 0.00355 1.5
3 16 0.00449 1.2
4 32 0.01235 0.9

impossible for all network variations; therefore, an average value for these points was

taken as the overall slope coordinate.

In Figure 10 the hardness parameter versus MSE is plotted over the range
[0.0:9.0] for all tests. In training experiments using the four different hardness pa-
rameters found in the MSE tests, neural networks for this problem trained to a
lower total error while using the largest hardness parameter (from experiment one)
to characterize the transfer function. Tests two, three, and four show that the trans-
fer function’s output slope decreases slightly with more inputs, but the summation
of synaptic contributions usually exceeds the dynamic range where the hardness pa-
rameter has the most effect on the output. For example, if a network has 16 inputs,
the dynamic range of the activation function parameter a (sigmoid[a]) is between
—40 < a < 40, where a is the summation of weights times inputs (assuming biases
are set to zero in this example). The sigmoidal function’s slope region is most pro-
nounced between —2 < a < 2, which is a very small region compared to the entire
dynamic range. As the number of inputs increase, the transfer region becomes less
significant in the sigmoid output. Therefore, using the largest hardness parameter
measured for all network sizes should give the best result for simulation without

having to adapt the hardness parameter for different sized networks.

4.2.2.1 ETANN Sigmoidal Transfer Function Based on experimental

results for a Vgarn = 3.3V and a Vrer, = Vreri = 1.5V (64-input operation), the
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following transfer function suffices to characterize the ETANN device for simulation.

1.83
1+ e—l.HE(aynaptic contributions) -

Neuron Output = .94 (5)

Note that the hardness parameter which provided the best results (lowest error in

training the test network) was derived from test number one for a single neuron.

4.2.83 Simulator and ETANN Implementation Results for a 3-Class Problem
Simulation and implementation tests were performed to assess the accuracy of the
ETANN sigmoidal transfer function characterized above. Tables 4 and 5 illustrate
simulator and implementation results (averaged over three runs) while using iBrain-
Maker (v2.02) and Neural Graphics as simulators. The Neural Graphics simulator
was coded with the sigmoidal transfer function found in this research. The iBrain-
Maker simulator, which is a commercial software system that comes with iNNTS
(3), uses a look-up table rather than a coded sigmoid; using the high, low, and gain
values that (3) provided in their transfer function menu, the look-up table (resolution

unknown) probably emulates the following transfer function:

1.765

iBrainMaker Neuron Output = 1 + - 10 (synaptic contributions)

915  (6)

Note: The iDynaMind (v2.0) (which is also a part of iINNTS) was not included
in the test because for large-class problems with thousands of training vectors (to

be used in later experiments), the simulator’s limitations are exceeded.

Comparative testing was done to check Neural Graphics’ results with those of
a working simulator, iBrainMaker. Both simulators trained on the same data and
were also tested with the same test data; the initial weights were randomized for
both simulators. After training, the weights were downloaded from each simulator

to an ETANN device (reused the same device) for testing. Again, the same test data
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Table 4. ETANN and iBrainMaker with 3-Classes

Number of Training Simulator | Simulator | ETANN
Epochs | Time(min:sec)| Training Test Test
18 01:27 86% 82% 75%
37 02:53 88% 88% 78%
51 03:56 89% 92% 83%

was used on the device in each independent test without further training to check
classification of test data. Three independent tests were performed to establish a
classification average. The Neural Graphics simulator test results were matched by
ETANN'’s test result. The iBrainMaker simulator performance, however, was less
than ideal. The ETANN tests using iBrainMaker’s trained weights were on average
15 percent lower than those tests using Neural Graphic’s weights for the 3-class
network. The set-up configuration for Neural Graphics and iBrainMaker was as

follows:

o Training vectors: 540 (class 1 = 180; class 2 = 177; class 3 = 183)
e Test vectors: 60 (class 1 = 20; class 2 = 23; class 3 = 17)

e Features: 16 (Radar Signal Characteristics (5))

e Hidden nodes: 20

o Classes: 3 (number of emitters)

o Iterations: 540 iterations equals one epoch in this network

e Note: In Table 4 the time listed includes only training time.

e Note: In Table 5 the total training time plus testing time is listed. After each
epoch of training, Neural Graphics automatically performs a network test using

all test vectors.




Table 5. ETANN and Neural Graphics with 3-Classes

Number of Training Stmulator | Simulator | ETANN
Epochs | Time(min:sec) | Training Test Test
18 01:01 91% 93% 93%
37 02:10 95% 93% 93%
51 03:00 97% 95% 95%

4.2.4 Simulation and ETANN Implementation Results for an 8-Class Problem
Table 6 and 7 show the test results for an 8-class problem. These eight classes are
a subset of the first eight classes of the 30-class radar emitter data. As clearly
indicated from the data in Table 6, iBrainMaker had a difficult time training on the
data. There is no known explanation as to why iBrainMaker performed so poorly; on
the other hand, Neural Graphics did a superb job of training on the exact training

and test data used in iBrainMaker.

Table 8 shows the Chip-In-Loop (CIL) training results with iBrainMaker on
the 8-class problem. CIL training results were averaged over three separate training
events, each totaling 1,842 epochs of training. The highest on-chip test result was
88 percent, which is 10 percent lower than the on-chip test result after training with
Neural Graphics.

Because of time constraints, it was decided after this test that further training
and testing off-chip would be limited to the Neural Graphics simulator even though
there is no CIL capability at this time. The iBrainMaker simulator trains much too
slowly for large class problems with a lot of data. In addition, it produces poor
classification results from the radar emitter data used in this research, even though

CIL training was used to improve on-chip classification performance.
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Table 6. ETANN and iBrainMaker with 8-Classes
400 Training Vectors and 200 Test Vectors
Num-b_e—r_;j ~ Training Network | Simulator | Simulator | ETANN
Epochs Time(hr:min:sec) Size Training Test Test
1,843 2:33:00 16x16x8 64% 1% 2%
4,774 6:37:57 16x16x8 70% 72% 72%
2,045 4:37:19 16x20x8 80% 76% 7%
Table 7. ETANN and Neural Graphics with 8-Classes
400 Training Vectors and 200 Test Vectors
Number of Training Network | Simulator | Simulator | ETANN
Epochs Time(min:sec) Size Training Test Test
100 01:40 16x16x8 95% 94% 98%
Table 8. CIL Results with iBrainMaker
400 Training Vectors and 200 Test Vectors
Simulator | Network | Simulator CIL CIL |
Epochs Size | Train/Test | Epochs | Train/Test
1,842 16x16x8 | 73%/69% 0 70%/65%
” ” ” 10 88% /8 4%
" " ” 20 89%/79%
” " " 30 89%/83%
" ” " 40 90%/87%
” " ” 50 90%/85%
” ” b} 60 92% /86%
” " ” 70 92%/86%
” ” » 80 9 4% /86%
" " " 90 90%/88%
” ” ” 100 88%/69%




Table 9. Training and Testing Results I.

Training Test Neural Graphics
Iterations | Classes Vectors Vectors Total Simulator ETANN
(z1000) (Class/Total) | (Class/Total) | Error | (Train/Test) (Test Only)
70 8 50/400 25/200 19 . 94%/91% 92%
61 8 75/600 25/200 24 94%/94% 92%
67 14 50/700 25/350 30 94%/93% 95%
84 14 75/1050 25/350 34 93%/93% 93%
74 20 50/1000 25/500 43 91%/89% 88%
86 20 75/1500 25/500 52 87%/85% 86%
78 26 50/1300 25/650 61 76%/76% 72%
98 26 75/1950 25/650 48 82%/81% 59%
100 30 50/1500 25/750 45 81%/80% 72%
100 30 75/2250 )  25/750 56 78%/78% 7%

4.3 Phase Two Research Findings

4.8.1 Single Chip Tests Table 9 is a summary of first-cut results while using
Neural Graphics to simulate the ETANN device for a real application—solving the
radar emitter identification problem. Note: All test results were averaged over three
independent training/test runs. The single chip tests (as well as multi-chip tests)
involved training using the normal back propagation algorithm (no adaptive mea-
sures or momentum). The best training result between 0 and 100,000 iterations was
chosen—that is the reason for the difference in iteration numbers in Table 9. The
number of training and test vectors were chosen to correspond to the baseline results
listed in Chapter 3. As the number of classes increase, the ETANN test results get
worse (in general). The chip resolution is limited at about three decimal places of
accuracy, whereas the simulator trains/tests with approximately six decimal places
of accuracy. Although the results so far do not come close to matching baseline

results listed in Chapter 3, these results are a starting point to improve upon.

Several training improvement techniques were tried in order to get the best

training and testing results. First of all, the weights in the Neural Graphics simu-
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lator were growing steadily as training iterations increased. The ETANN device is
constrained to accept weight values between —2.5 < w;; < 2.5. The first approach
to solve the problem was to scale the weights after training and write them to the
ETANN device. An experiment involving real training data was performed as an at-
tempt to solve the problem. Failure was the result. Apparently a lot of information

is lost when scaling the weights; thus, poor testing performance can be expected.

The next test involved changing the Neural Graphics weight update code. In
order to keep the weights within range of the ETANN device, the Neural Graphics
weight update program routine was modified to limit the weight values. The mod-
ified program routine is in Appendix F. The biases, on the other hand, are allowed
to exceed the range, —2.5 < w;; < 2.5, because the ETANN device allows the pro-
grammer to use up to seven biases per neuron. Although Neural Graphics trains
with one bias per neuron, the bias value may be divided by any integer between and
including one and seven. For this research, six was the deviser used, and the result
was written to six biases. Consequently, the bias values in Neural Graphics were

limited to a value of 15,

To improve network performance and lower the total error, the Neural Graph-
ics code was modified. Recall the ETANN sigmoidal transfer function experiment
results. Based on test results, it was concluded that the ETANN device incurs more
error when training to +1 for the desired class and to —1 for the non-desired classes;
consequently, if the actual device high and low threshold values were assigned as the
desired class and non-desired classes, respectively, then total error could be reduced
in training. In simulator tests performed for this research, training results did im-
prove and the total error dropped significantly when training to the modified desired
and non-desired levels (compare training and testing results I and II). The ETANN
levels were characterized earlier in this chapter as 0.89 (high) and -0.94 (low) and

were coded in the Neural Graphics simulator for training/testing improvement.
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Further improvements in training were made by using the exact derivative
calculated from the sigmoidal transfer function, denoted by f, derived from the
ETANN. The derivative equation is the following:

0f(1.74a) _ 9{—1.83(1 4 e~17)"! — 94} 7
da - da (7)
= .05[.94+ f(1.742)][.89 — £(1.74a))] (8)

The result of using this derivative function as opposed to the precise derivative
of a tanh function (see Appendix A) was increased training speed and accuracy
while using Neural Graphics—see Table 10. Although not perfect results, this table
shows a definite improvement over Table 9. As the number of classes increased
in the data sets, classification accuracy decreased as expected with few exceptions.
Generally, as the number of training vectors are increased, the number of required
training epochs increases; this is why there were some exceptions to increasing classes
and decreasing classification accuracy. The ETANN classification results generally
followed the same trend as the simulator’s, except for the two 30-class networks,
which were the trend breakers. Resolution breakdown is a probable explanation for
this experiment outcome. The ETANN'’s resolution is about 7.5 bits for the weight
values, whereas the Neural Graphics simulator has more than 32 bits resolution.
There will be a margin of error regardless of what simulator a person uses, but the
goal is to minimize that error, which is one of the main objectives of this research.
Fine tuning can always be done through chip-in-loop training, which is the final
step towards realizing a fully trained network. Chip variation and resolution can
usually be compensated for by the chip-in-loop training method, but poor training

and testing results cannot.

According to (28), if enough hidden neurons are used in a two layer network
(inputx hidden x output), most networks can be accurately classified (given good

features and separable data). An experiment was performed to find an efficient num-
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Table 10. Training and Testing Results II.

Training Test Neural Graphics
Iterations | Classes Vectors Vectors Total Simulator ETANN
(z1000) (Class/Total) | (Class/Total) | Error | (Train/Test) | (Test Only)
40 8 50/400 25/200 11 95%/94% 98%
40 8 75/600 25/200 15 94%/96% 97%
40 14 50/700 25/350 15 96%/94% 94%
40 14 75/1050 25/350 20 95%/95% 96%
40 20 50/1000 25/500 20 95%/93% 91%
40 20 75/1500 25/500 29 92%/92% 92%
40 26 50/1300 25/650 29 90%/89% 92%
40 26 75/1950 25/650 37 90%/89% 65%
40 30 50/1500 25/750 38 88%/88% 71%
40 30 75/2250 25/750 48 88%/89% 80%

ber of hidden neurons that would give good classification results for the radar emitter
features. The data was trained using the standard back propagation algorithm. Ta-
ble 11 shows that generally as the number of hidden neurons is increased the total
error goes down, and the classification accuracy goes up. The principal drawback to
adding more hidden neurons is slower training speed. By observation, the ETANN
chip appears to have some difficulty in achieving better than 83 percent classification
for the 30-class network. A difference in chip resolution versus simulator resolution
is a likely reason for the discrepancy. In experiments with fewer than 26 classes,
the ETANN performed well for‘this set of data. Classification results will always
be problem dependent—the number of training and test vectors, the separability of

classes, and the quality of features used are all important considerations.

Table 12 shows the final training and testing results for a single chip implemen-
tation of the radar emitter feature data. What perhaps is not obvious is that as the
number of classes increase, so does the total error. As the number of training epochs
increase, the total error decreases. The ETANN test results worsen as the number

of classes increase for this particular problem. This trend suggests the ETANN does
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Table 11. Training and Testing Results III.
75 Training Vectors Per Class (2250 Total)
and 25 Test Vectors Per Class (750 Total)

Neural Graphics
Iterations | Classes Network Size Total Simulator ETANN
(z1000) (input-hidden-output) | Error | (Train/Test) | (Test Only)
200 30 16x16x30 48 82%/81% 76%
200 30 16x20x30 44 86%/85% 81%
200 30 16x25x30 42 92%/90% 7%
200 30 16x30x30 41 91%/91% 72%
200 30 16x35x30 41 92%/92% 83%

not have enough bit resolution to separate all the classes with the simulator trained
weights. The classification results, as with all results in this chapter, are an average

of three measurements.

Perhaps the problem cannot be solved to user satisfaction using a single chip
with weight resolution of 7-8 bits without resorting to chip-in-loop (CIL) training.
The primary reason for having characterized the ETANN sigmoidal transfer function
in the first place was to limit the amount of CIL training required, because CIL
~ training decreases the useful life of the ETANN (3:19-8). Due to limited time, a
CIL program was not written, but it is recommended for future research. With
considerable effort, it is possible to code a C routine to perform CIL training. After
10 to 20 epochs of CIL training, classification accuracy should be improved. CIL
compensates for chip variance and loss of resolution when going from simulator to
chip.

4.8.2 Multi-Chip Testing Using the EMB The ETANN Multi-chip Board
(EMB) is a platform that allows a designer to implement up to eight chips in var-
ious configurations for neural computing. The EMB was used in this research to

implement the primary thesis problem solved in simulation (5). The best training
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Table 12. Training and Testing Results IV.
75 Training Vectors/Class (2250 Total)
and 25 Test Vectors Per Class (750 Total)

Number of | Total | Network | Simulator | Simulator | ETANN
Epochs | Error Size Training Test Test
44 25 | 16x35x30 95% 93% 75%
89 24 | 16x35x30 96% 94% 83%
133 24 | 16x35x30 96% 95% 81%
177 24 | 16x35x30 96% 95% 82%

results achieved in (5) came from using a hierarchical system of classifying 30 radar
emitters. The hierarchical approach which gave the best test results in simulation
is implemented in ETANN hardware using three devices on the EMB platform for
performance evaluation and simulator comparison. First, a brief description of the

hierarchical approach is presented, and then the hardware results are shown.

4.3.2.1 Hierarchical Approach As described in (5), the hierarchical ap-
proach divides a large-class network into smaller networks with one or more group-
ing networks. For example, if one were to divide a 30-class problem into two sub-
networks, a total of three networks would be needed to perform the classification

task. Suppose the networks for the hierarchy used in research are listed as follows:

1. A 2-class network for separating the 30 classes into two groups—used as a

switch to control the other two networks.
2. A 12-class network (bottom 12) to classify group one.

3. An 18-class network (top 18) to classify group two.

This hierarchy is but only one example of the infinite number of possible designs.
It just so happens that ihis design is the network hierarchy used in this research.

Figure 11 shows a block diagram for the hierarchical approach used in this research.
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Network two acts as a switch on the output that selects one of two classes; one class

contains all the bottom 12 classes, and the other contains all the upper 18 classes.

4.3.2.2 Hierarchical Configuration Results Until now most of the previ-
ous experiments were performed on a single chip, discounting chip-to-chip differences.
In the following experimental results, chip-to-chip variances were investigated for a
multi-chip implementation. Six chips were used in the experiments. On-chip and

chip-to-chip variance test results are in Tables 13 and 14.

Table 13 shows the on-chip variance test results for six chips in three different
networks. The networks listed in this table are one example of a hierarchical network
used to solve the radar emitter problem. To compute a standard deviation, three
ETANN tests were performed on every chip, and the result was averaged. Variation

on a single chip is practically negligible.

On the other hand, chip-to-chip variation as shown in Table 14 is more signifi-
cant, averaging about +3 percent for all the networks shown. This finding reinforces
the need for chip-in-loop training, which was not performed in this research because
of limited time. The data used to train the hierarchical networks were partitioned
as follows: 1) Network One: 2250 training vectors (18/12 split into two classes),
2) Network Two: 900 training vectors (bottom 12 classes) , and 3) Network Three:
1350 training vectors (top 18 classes). The number of training iterations for each
network was as follows: 1) Network One: 600k, 2) Network Two: 500k, and 3)
Network Three: 400k.

Table 15 shows the final hierarchical implementation results for three different
network sizes. The hierarchical probability was computed using the actual results
fror ' .chip tests. The simulator tests for the hierarchical network are the same as

those listed in Table 14.

Without cnip-in-loop training, it appears that the best an ETANN device can

do with this particular data (30-classes) is about 87 percent classification rate. In-
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Table 13. On-Chip Variance Test Results

Network | Simulator | Total | ETANN | Standard
Chip Size Train/Test | Error | Test Avg. | Deviation
1 16x20x2 | 99%/96% 23 95% +.1%
2 » ” ” 86% :*:.2%
3 » ” ” 90% +. 1%
4 ” ” ” 8 4% +.1 %
5 ” ” ” 87% :*: 1 %
6 » » ” 86% :t 1%
1 | 16x20x12 | 97%/96% 18 95% +.0%
2 ” ” » 94% i‘o%
3 " » n 95% :t .2%
4 » ” » 96% 4. 4%
5 " " " 91% +.0%
6 ” » ” 96% :!:2%
1 |[16x20x18 | 99%/98% 19 97% +.1%
2 " ” " 82% +.2%
3 ” » ” 89% :*:.1%
4 » ” » 83% :!:.1%
5 ”» ”» » 89% :t.3%
6 ” " » 88% :h.o%

Table 14. Chip-to-Chip Variance Test Results

[ Network Simulator | Test Avg. of | Combined

Size Test 6 Chips Deviation
Netl 16x20x2 93% 90% +4.3%
Net2 16x20x12 96% 96% +1.6%
Net3 16x20x18 98% 96% +3.6%
Netl 16x25x2 93% 89% +1.9%
Net2 16x25x12 96% 92% +2.8%
Net3 16x25x18 98% 95% +2.9%
Netl 16x30x2 96% 93% +1.3%
Net2 16x30x12 96% 94% +3.6%
Net3 16x30x18 98% 92% +4.0%
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creasing the number of hidden nodes did not improve performance for the hierarchi-
cal networks as it did in single chip implementations (assuming the same number of
training iterations), but it did decrease the amount of deviation from the average
result. More training might cause a network with more hidden neurons to improve
classification accuracy, or it might cause the network to generalize poorly. But from
observation of the weight file, the majority of the weights were near their maximum
values that they could take on (an indication that the network was near “brain

dead”).

The term “brain dead” is used to describe a network that will not train any
longer. If the network is near some acceptable range of classification, then chip-in-
loop (on-chip) training should be all that is needed to train the network to some
acceptable error. If the network is “brain dead” and the network is still performing

unacceptably, then try restarting training with a new set of random weights.

The drawbacks to using a hierarchical approach are added complexity, addi-
tional number of devices, and increased processing time (about 3usec for this hier-
archy). Furthermore, there are no guarantees of better performance over a single
chip implementation. Even though in this training example the on-chip test results
were better for the hierarchical networks than for the single chip networks, the sin-
gle chip networks performed better in simulation (compare simulation results in the
tables). Because of resclution loss when going from simulator to chip with higher-
order networks, on-chip tests will be poorer for single chip implementations than for

hierarchical (multi-chip) implementations of the same network problem.

4.3.2.3 Research Sub-Objective Findings The primary objective of this
research was to implement an artificial neural network in the ETANN hardware to

classify radar emitter data. The sub-objectives in this research include the following:

1. Minimize the processing time and maximize the classification accuracy.

2. Develop a technique to load training weights from Neural Graphics to iNNTS.
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Table 15. Hierarchical Implementation Results -

Hierarchical Hierarchical | Combined

Network Size Architecture Probability | Deviation
16x20x2 / 16x20x12 / 16x20x18 87% +9.5%
16x25x2 / 16x25x12 / 16x25x18 84% +7.5%
16x30x2 / 16x30x12 / 16x30x18 86% +8.9%

3. Estimate processing time to make a classification in hardware.
4. Compare resolution differences between the hardware device and simulator

5. Calculate an implementation loss factor.

To minimize processing time yet maximize classification accuracy requires a
designer to consider trade-offs. The best on-chip classification accuracy came from
using a hierarchical implementation; however, the fastest network was a single chip

implementation using a two layer (inputs x hidden x outputs) network.

A method of transferring the Neural Graphics trained weights to iNNTS was
accomplished with success. Appendix H contains the C tools necessary to accomplish

this objective.

Processing time is dependent on network architecture. This means as more
layers are embedded in the network, the longer the time it will take to process the
feature information and produce an output. Each layer of a network takes 3 usec to
process input data and produce an output. For the single chip implementation to
the thesis problem (assuming two layers), the processing time takes 6 usec. For the
hierarchical network in this research, however, the processing time takes a minimum
of 9 usec—6 pusec for three independent networks (on separate chips) to process the

feature data simultaneously and 3 usec to select the winning output.

According to (20), chip weight resolution is about 7.5 bits (about three decimal

places), and device processing resolution is about 6.5 bits (between two and three
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decimal places). The Neural Graphics simulator uses more than 32 bits of resolu-
tion in processing numerical data (six decimal places). The trained weights from
Neural Graphics were rounded off at eight bits resolution (three decimal places).
For the data used in this research, the ETANN chip accuracy began dropping off
with eight-class networks and was severely degraded with 26-class networks (in early
experiments). After using improved training methods (in section 4.3), accuracy
degradation was reduced to more acceptable levels for up to thirty-class networks—
fair results considering that no chip-in-loop training was used to compensate for

chip-to-chip variance or loss of resolution.

The loss of resolution when going from simulator to chip is network depen-
dent, but was more pronounced in single chip implementations than in hierarchical
networks for the same network problem. Hierarchical networks lower the loss of res-
olution by breaking large-class problems into sub-networks with fewer classes. The
fewer the number of classes, the less the loss of resolution when going from simulator
to chip. The reason is because of network complexity. It takes less weight resolution
to separate fewer classes, but as the amount of training data increases, so does the

required weight resolution.

The implementation loss computed for this research assumed no chip-in-loop
(on-chip) training. For a single chip network implementation (16 x 35 x 30), the
average (of four networks) implementation loss per chip was 14 percent. For the
hierarchical network, the average (of nine networks) implementation loss per chip was
3 percent, but the hierarchy consists of three chips—the total average implementation
loss equaled 9 percent. Again, implementation loss is a factor of network size, data
complexity, amount of data, and chip variance. Loss factors will be different for

other network implementations.
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4.3.8 Feature Saliency The Neural Graphics program provides a measure of
the importance of a particular feature in the network classification process, and it is

called saliency (5:29).

Cameron used five data sets in 25 runs to determine the saliency of each feature.
He then calculated average and final ranking of each feature over all the runs—see

Table 16.

¢ Classes: 30

o Training vectors: 50 per class

o Test vectors: 25 per class

¢ Hidden nodes: 20

o Iterations: variable; 10,000 to 30,000

o Special note: Neural Graphics toggled Saliency On

The most important feature for the classification process was feature 16; how-
ever, there was not a significant drop in network accuracy when feature 16 was
omitted. This result could be due to the redundancy of information contained in
the other 15 features. The other features were less important; there were no large

discontinuities in the ranking (5:30).

4.4 Conclusion

This chapter presented findings on ETANN sigmoidal transfer function tests
and on single chip and multi-chip experiments. Test results showed that the ETANN'’s
sigmoidal transfer function can be accurately characterized through simple experi-

ments.

The thesis problem and sub-objectives were met with little difficulty once the

Neural Graphics simulator was successfully modified to emulate the ETANN device
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Table 16. Feature Saliency Ranking (5:30)

Feature | Avg. Rank | Ranking
1 4.4 2
2 11.2 12
3 12.6 13
4 10.5 11
5 8.3 9
6 7.1 6
7 7.5 8
8 5.6 5
9 5.0 4
10 7.2 7
11 12.8 14
12 14.0 15
13 14.2 16
14 10.1 10
15 4.5 3
16 1.0 1

and a method of porting the weights out of Neural Graphics into iNNTS was devel-
oped. The maximum on-chip classification accuracy for a single chip implementation
of the 30-class problem without chip-in-loop training was 83 percent, using 35 hidden
neurons. Again without chip-in-loop training, the maximum on-chip classification
accuracy for a hierarchical configuration with the 30-class problem was 87 percent.
The total average implementation loss was found to be 9 percent for the hierarchical

network.

From a feature saliency experiment, the most important feature found in the
classification process was feature 16, and the least important was feature 13. For
security reasons, the features of the data are only known as radar emitter character-

istics.
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Results of this research are ground-breaking in several categories. First of all,
no radar emitter classification problem has been implemented in ETANN hardware
until now. Also, there have been no reports of using customized simulators on work-
stations to train networks for the ETANN chip. Furthermore, there have been no
published reports of the ETANN chip’s sigmoidal transfer function being character-
ized for non-binary operation. Below is a summary of the significant contributions

in this research:

1. Characterized the ETANN sigmoidal transfer function. The ETANN sigmoidal
transfer function was not previously characterized; now it has been accurately

characterized and tested ir a custom simulator, Neural Graphics.

2. Customized the Neural Graphics simulator for ETANN emulation. Neural
Graphics was developed primarily for emulating the Cybenko type of network
using 1/(1 + e~®) as a sigmoid function. Now, Neural Graphics can emulate
the ETANN chip using a modified tanh function, which was derived during
experiments on the ETANN chip.

3. Developed interface software with iNNTS. At the beginning of this research
there was no software to interface with iNNTS for the purpose of writing weight
values, which were trained on a custom simulator, to the ETANN chip. In
addition, there was no software for testing the on-chip classification accuracy.

Four C programs were written to interface with iNNTS—two programs each for

the single chip and the ETANN Multi-chip Board (EMB) modes of operation.

4. Implemented thesis problem in single chip and multi-chip configurations. Until

now the 30-class radar emitter identification problem had only been solved in
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simulation using a Cybenko type sigmoidal transfer function on Neural Graph-
ics (5).
5. Defined feature saliency for thesis problem. Feature saliency was defined pre-

viously in (5) and was accomplished a second time during this thesis research.

The results are the same.

For the purpose of emulating an ETANN device in a custom simulator, a
sigmoidal transfer function was derived, tested, and implemented as a model for

Vearn = 3.3V, 64-input operation. The result is the following equation:

1.83

1+ e—l.742(nynaptic contributions) -

Neuron Output = .94 (9)

Neural Graphics, an AFIT neural network simulator running on a Silicon
Graphics (model 4D) workstation, was customized for use with the ETANN chip.
Customizing Neural Graphics required changing the coded sigmoidal transfer func-
tion, coding a limitation routine on weight values to keep weight values below the
ETANN'’s maximum value, adding more bias weight values for chip emulation, and
modifying Neural Graphics’ “makeinput.c” file to optimize desired and non-desired
training values in the training (i.e., in general a simulator coded with the tanh trans-

fer function should train to -1 for non-desired class and +1 for desired class).

In addition to modifying the sigmoidal transfer function, there were several
other ETANN emulation problems to overcome in Neural Graphics. For instance, the
weight values in Neural Graphics grew steadily as the number of training iterations
increased, and thus they exceeded the ETANN chip’s dynamic range in the course of
training. Moreover, the unmodified version of Neural Graphics trains a network using
a single bias weight value per neuron, whereas the ETANN chip may use up to seven
bias weight values per neuron. The additional neurons give added dynamic range

to the weight dimension space, which makes simulator and chip training easier. In
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another problem the Neural Graphics weight values were not written in a compatible
format for programming in iNNTS. The solution to this problem required developing
software to interface the Neural Graphics’ weight file with iINNTS and writing the
weight values to a chip, both in single-chip and ETANN multi-chip board (EMB)
modes of operation. Furthermore, a classification program was written to classify
test vectors on the ETANN chip. All of these problems were solved during the first

phase of research (covered in Chapter 4).

In the second phase of research, emphasis was on solving the radar emitter
identification problem and the sub-objectives. The maximum on-chip classification
accuracy for a single chip implementation without chip-in-loop training was 83 per-
cent, using 35 hidden neurons (16 x 35 x 30). Again without chip-in-loop training,
the maximum on-chip classification accuracy for a hierarchical configuration with
the 30-class problem was 87 percent, using 20 hidden neurons (chip one [16 x 20 x

2], chip two [16 x 20 x 12], and chip three [16 x 20 x 12]).

Fast operation (speed), in general, is a major consideration for emitter classi-
fication in hardware. The highest on-chip classification accuracy from these experi-
ments came from using a hierarchical implementation; however, the fastest network
came from using a single chip implementation of two layers (input X hidden x
output). The speed versus classification accuracy trade-off is a common factor in

simulation as well as in hardware implementation.

A method of transferring Neural Graphics’ trained weights to iINNTS was ac-
complished by formatting the weight values in an ASCII file and then running an
interface program with iNNTS to write the weights to a chip. Developing this method
was essential to implementing a neural network in hardware using the customized

Neural Graphics simulator.

Implementation loss factors are network and data dependent. For the hierar-
chical network investigated in this research, the total average implementation loss

(from three experiments) was found to be 9 percent. In other words, one can ex-
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pect to lose classification accuracy by approximately 9 percent when implementing
a device with the Neural Graphics simulator trained weights, without chip-in-loop

(on-chip) training, for this particular data.

The last experiment was to determine feature saliency. Chapter 4 shows the
saliency results with the features in rank order. The most important feature for the
classification process was feature 16, and the least important was feature 13. For
security reasons, the features of the data are only known as radar emitter character-

istics.

5.2 Recommendations

Topics in this thesis could be explored further. The single most important topic
to continue research is on development of a Chip-In-Loop (CIL) training program
using the iNNTS software interface. With a CIL capability, one can finish training

the simulator-trained chips (as done in this research) to an acceptable error rate.

Another topic to continue research on is the use of different criteria for the
partitioning of the classes for hierarchical systems. Perhaps one could yield further
increases in classification accuracy. If both of these recommendations are followed,
increases in data and class size can be investigated and the results compared to those

in this thesis.

5.8 Summary

This research has demonstrated that artificial neural networks can be used in
the design of radar emitter identification systems and be implemented in hardware
with acceptable accuracy (considering no chip-in-loop training) for 30 classes. It
has also been demonstrated that the hierarchical approach to the 30-class problem
results in a greater on-chip accuracy than that of a single chip implementation. The
maximum on--hip classificiition accuracy for a single chip implementation was 83

percent. For a multi-chip implementation using a hierarchical approach, the maxi-
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mum on-chip classification accuracy was 87 percent. The drawbacks to a hierarchical
approach, however, are added complexity, added number of devices, and added pro-
cessing time (about 3usec for this hierarchy). For the hierarchical network, the
total average implementation loss was found to be 9 percent in this problem. It
is recommended that a chip-in-loop training interface with iNNTS be developed in
future research efforts. And finally, investigation into the use of different criteria
for partitioning the classes for hierarchical systems could yield further increases in
classification accuracy. Thus, following these recommendations would allow further
research efforts in ETANN hardware implementation with larger class problems than

those studied here.
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Appendix A. Partial Derivative of ETANN Sigmoidal Transfer

Function

This appendix presents a derivation for the partial derivative of the general
type of sigmoid function used in the ETANN chip. The vanilla back propagation
algorithm as described by Rogers and others (28) uses a unipolar sigmoid function,
sometimes referred to as a squashing or logistic function. Below is a derivation of
the partial derivative for the general sigmoid function used in the ETANN device,

sometimes referred to as a bipolar or symmetric sigmoid.
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For the ETANN sigmoidal transfer function defined in Chapter 4, Equation 5,
it can be easily shown that the derivative results in the following equation:

af(1.74a) 0{—1.83(1 + e~ 1-74a)-1 _ 94}

Jda da
= .95[.94 + f(1.740)][.89 — f(1.74a))

Recall that for backward error propagation the weights are updated as follows:
wl = wf; - né;z; + o(wf; — wj)

where w;; is the weight from node i to node j in the next layer, z; is the output of
node i, and §; is the error associated with node j. The n and a represent learning
rates. The new weight is represented by w;, the current weight by w§;, and the old
weight by wj;. Thresholds are adapted similarly where z; is replaced by +1 if the

threshold is added to the weighted sum and -1 if it is subtracted.
The 4; for the ETANN equations are defined in this research as follows:

6 = .95[.94 + y;](.89 — y;](d; — y;) for output node j
77 .95[.94 + z;}[.89 — z;] Tk Sxwjx for hidden node j

where z; and y; = f(1.74) in the hidden and output nodes respectively; d; is the

desired output for output node j, and y; is the actual output. For the hidden nodes
the &, are the errors for the layers above (28:55).
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Appendix B. How to Make an iBrainmaker Weight File

B.1 Weight File Format

The file format for the weights file is best shown through an example. Figure
12 shows an example of a network with weighted interconnections between input
and hidden neurons (nodes) and hidden and output neurons (nodes). This example
illustrates only one hidden layer; there may be any number of hidden layers, but
it has been shown that one hidden layer suffices (with enough hidden nodes) to
characterize any function (28:52). The number of hidden nodes, however, is problem

dependent.

} Output Nodes

} Hidden Nodes

} Input Nodes

Input Feature Vector

Figure 12. Network Example

The format for writing the weights to a file is shown below. Note that w_11
represents the weight from input node number one to hidden node number one. The
weights are written from layer one (input to hidden layer) to the output layer. The

file looks something like the following:
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veights
v_11 w_21 bias (weights to hidden neuron #1)
w_12 w_22 bias (weights to hidden neuron #2)

w_.14 w_24 bias (weights to hidden neuron #4)

(empty line between layers)

w.1l w_ 21 w_31 w_41 bias (weights to output neuron #1)
w_12 w_ 22 w_32 w_42 bias (weights to output neuron #2)

Weights take on a range of -2.5 to 2.5 for ETANN configuration. Input values
are limited in the range of -1.0 to +1.0. The number of bias weights per neuron is
user defined (usually one to seven bias weights per neuron are used on the ETANN
chip).

B.2 Writing Weights in Neural Graphics

Neural graphics can be modified to write your weights into a file of any desired
format by simply modifying the "saver.c” and "general.c” files. An example of mod-
ifying "saver.c” and "general.c” is shown below. These files were modified to write

the weights into a file named ”weights.calvin” in the same format as iBrainMaker.

/***********************************
* saver.c modification
***********************************/
/* section added to saver.c file */
write_calvin_weights(filename)

char filename[];

{
FILE *fpx;
int i,j,k;

fpx = fopen(filename,"w");
if (fpx == NULL){
printf("Couldn’t open weight file ");
ggexit();
}
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fprintf(fpx,"veights \n ");
loopi (parameters.layers){
int sizex;
loopj (net->layeri[i)->size_output){
loopk(net->layeri[i]l->size_input)
fprintf(fpx,"%f “,net->layeri[i}->weights[j][k]);
fprintf(fpx," %f",net->layeri[i)->thetal[j]);
fline;
}
fline;
}
fclose(fpx);
}

/*****************************************************
* general.c modification
T ey
for(avg=1;avg <=avgs ;avg++){

check_parameter_line(argc,argv);

DO_NETWORK() ;

hold_one_out();

file_saliency(0);

do_avg();

/* following line added to code in gemeral.c file */
write_calvin_weights("weights.calvin");
write_veights("weights.temp");

#ifdef TERMINAL
endwin() ;
#endif
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Appendix C. How to Design a Network for the ETANN Chip

C.1 Overview of Design Process

Design of an ANN is basically a seven-step process of working through a log-
ical description of the problem to be solved. First of all, decide whether the ANN
is to predict, generalize, or recognize (34). Some examples include stock market
average prediction, data generalization for loan risk analysis, and automatic target

recognition systems using multi-sensor input to recognize tanks, trucks, and jeeps.

Next, decide what information will make good features for predictions, gener-
alizations, or recognitions. Predictions are based on past information of pertinent
data. For example, in predicting stock averages, information to be used for predic-
tion might include previous stock prices, market interest rates, state of the economy,
and world market averages, to name a few. Good features make good classifiers
(predictors). The selection of information to use as features is more an art than a

science. Follow your logical intuition and experiment with various types of data.

Following this last step, you will need to get lots of data. Generally, the more
data, the better the predictor, generalizer, or recognizer. One rule states that using
a minimum of three times the number of input features will give a rough estimate
of how many training vectors are needed per class (Foley’s rule) (28:60). If the total
number of training vectors is less than twice the number of features, the training
data error rate will be near zero regardless of the distribution, which is a result of

Cover’s theorem on capacity (28:60).

When building a feed-forward network, there are two things needed to make
the network. One needs samples of input data and to know the desired results.
The next step is to build the network. Two things are needed to make a network: a
network definition and a collection of data. A network definition consists of assigning

a number of input nodes to a number of hidden nodes to a number of output nodes,
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see Figure 13. The number of inputs in Figure 13 is two, the number of hidden
neuron nodes is two, and the number of outputs is one. The assignment of input
nodes and output nodes is problem dependent. The assignment of hidden nodes
is problem and data dependent. If the problem is linearly separable, then hidden
nodes are not necessary, unless there is an enormous number of training facts. In
that case add a hidden layer to improve network performance. Assign the number
of hidden nodes to correspond to the network complexity (linearly separable versus
non-linearly separable) by trial and error results. The goal is to train effectively with
as few hidden nodes as possible, so as to minimize the number of computations in
the network. Additional layers of hidden nodes may become necessary if the network

is quite large and has a lot of training facts.

After building the network comes training the network. Code your favorite
feed-forward training algorithm or use off-the-shelf programs like iBrainMaker (3) or

iDynaMind (23), which both use the popular back propagation training algorithm.

Training a network is also more an art than a science. Adjusting learning
parameters such as momentum, learning rate, and tolerance all become factors in

how fast a network will converge (within some acceptable error range).

Testing the network follows training the network. Always save a percentage
of the data for testing. Generally, 10-20 percent of the total number of vectors is
sufficient to test the network. It is important to show the network data that it has
not seen before, because only then will one know if the network is a good predictor,
generalizer, or recognizer. Finally, good results will depend on the network definition

and comparisons with other classifying techniques.

The last step in this process is running the network, presenting it with new
input data, and gathering results. The first two steps above are the most difficult
steps in the design process. As the saying goes, ” A problem well-defined is a problem

half solved.”

68




Output

Hidden
Nodes

inputs

Figure 13. Simple Network
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C2

Summary

Step 1. Define the problem. Decide whether you want the ANN to predict,
generalize, or recognize.

Step 2. Represent the Information. Decide what information will make good
features for predictions, generalizations, or recognitions.

Step 3. Get lots of data.

Step 4. Define the network. Define the number of inputs, hidden nodes,
outputs, and training data.

Step 5. Train the network.
Step 6. Test the network.
Step 7. Run the Network.
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Appendix D. How to Convert GTRI Data to Simulator Formats and
Shuffle

D.1 Introduction

What follows below is the C code used in this research for data conversion
and vector shuffling. Data conversion from GTRI format to iBrainMaker and Neural
Graphics formats was necessary for thesis research. The shuffling programs are used
to randomize the data vector order before training and testing a neural network.

D.2 How to Convert GTRI Data to iBrainMaker Format

Purpose: This program reads a GIRI data file and creates
an iBrainMaker fact file for processing in iBrainMaker.
This particular program is limited to three classes, but it
is easy to extend the ideas here for a file of several
classes.

Date: 5 June 1992

Author: Capt James Calvin

T s e S R N N S S S S S SRS S T OSSR SN E ST /

#include<stdio.h>

/*=================
Begin Main
s===============szx/
main()

{

FILE *in_ptr, *out_ptr;

int x, y, dimension;

int vector[20];

int class, junki, junk2, junk3, junk4;
int no_of_vectors;

int temp_1,;

dimension = 17;

no_of_vectors = 5795;
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/ P31+ 2t Pt 3]
Open Files
SEssEs=SEs=ST=STT=SsSs=k /

in_ptr = fopen("all30.d4","r");
out_ptr = fopen("3-class_bm.dat","w");
fprintf(out_ptr,"Line# f1 f2 f3 f4 f4 f6 f£7 £f8 f£9
£i0 fi11 f12 f12 f£f14 £15 f£16 C1 C2 C3 \n");
fscanf (in_ptr,"%d %d %d %d \n",&junkl, &junk2,&junk3,&junk4);
for (x = 0; x < no_of_vectors; Xx++){
for (y = 0; y < dimension; y++){
fscanf(in_ptr,"/d", &temp_1);
vector[y] = temp_1;
}
fscanf(in_ptr,"%d \n",&class);
if (class == 1){
for (y = 0; y < dimension; y++)
fprintf(out_ptr," %d “,vector(yl);
fprintf(out_ptr," 1 -1 -1 \n");
}
else if (class == 2){
for (y = 0; y < dimension; y++)
fprintf(out_ptr," %d ", vector{yl);
fprintf(out_ptr," -1 1 -1 \n");
}
else if (class == 3){
for (y = 0; y < dimension; y++)
fprintf(out_ptr," %d ",vector(yl);
fprintf(out_ptr," -1 -1 1 \n");

fclose(in_pt: -
fclose(out_pi.,,

End of Main Program
Pt F S F 5 1t 3 /
}
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D.8 How to Convert GTRI Data to Neural Graphics Format

Purpose: This program reads GTRI data files and creates a Neural
Graphics fact file for processing in Neural Graphics. This
program reads in data from all30.d (all 30 classes of GTRI’s data)
and then writes the data in Neural Graphics’ format for three
classes.

Date: 5 June 1992
Author: Capt James Calvin
#include<stdio.h>

#include<math.h>
#include<stdlib.h>

/ k=== S=sSsm=mE=ESzTS=sS
Begin Main

SEnSTZooss====sssTRXk /

main()

{

int x, y, dimension=17, no_of_vectors=5795;
int class, junkil, junk2, junk3, junk4;
FILE *in_ptr, *out_ptr;

int vector[20];

int temp_1;

in_ptr = fopen(“c-procgs/all30.d',"r");
out_ptr = fopen('c-progs/ng_3class.dat”, "w+");
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Read Header

fscanf(in_ptr,"%d %d %d 4d \n",&junki,&junk2,&junk3,&junk4);

Read Data
33+t 1+ + + + 3+ + 3+ 3+ + 3 3+ $3 /

for (x = 0; x < no_of_vectors; x++){
for (y = 0; y < dimension; y++){
fscanf(in_ptr,"%d",&temp_1);
vector(y] = temp_1;
}
fscanf(in_ptr,"%d \n", &class);

if (class == 1)
for (x = 0; x < 1; x++){
for (y = 0; y < dimension; y++){
fprintf(out_ptr," /d ",vector(yl);
printf("I am after class 1 ID \n");

}
fprintf(out_ptr,"1 \n");
}
else if (class == 2)
for (x = 0; x < 1; x++){
for (y = 0; y < dimension; y++){
fprintf(out_ptr," %d ",vector[yl);
printf("I am after class 2 ID \n");
}
fprintf (out_ptr,"2 \n");
}
else if (class == 3)
for (x = 0; x < 1;x++){
for (y = 0; y < dimension; y++){
fprintf(out_ptr," %d ",vector(yl);




printf("I am after class 3 ID \n");

}
fprintf(out_ptr,"3 \n");
}
}
/*=======================
Close Files
Sss===s===sssssssssossak /
fclose(in_ptr);
fclose(out_ptr);
/*============================
End of Main Program
Ef 3 5 ot Pt P TP T P e /
}
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D.4 Shuffle Program for iBrainMaker Data Files
/*===8======================================================
Purpose: This program reads an iBrainMaker fact file and
shuffles the facts (vectors) so as to create a random fact
file for training in the BrainMaker simulator. This program
is limited to a three-class problem, but can be extended to
more classes with little modification.

Date: 6 June 1992

Author: Capt James Calvin

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#define loop(A) for(i = 0; i < (A); i++)
float temp_1;

int iseed;

FILE *in_ptr, *out_ptr;

/ Pt 1t -+ + ¢+
Begin Main
s==s===s===ss=s==x
main()

{

int x, y, i=0, j=0, idx=0, countall=0;
int vector[20], used{[6000], order[6000];
int no_of_vectors = 5795;

int array_i;

int *array_prt[20];

int features[5795]) [20];
iseed = 2;
srand(iseed);

countall = 600;
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[*¥s====s=zzs=s=s=czc===
Open Files
===================*/

/*--Open temp file (3-class_bm.dat) and open an output file
(3-class.bm.dat)--*/

if((in_ptr = fopen("c-progs/3-class_bm.dat","r"))==NULL)
{
printf("I’m not able to open the input file\n");
exit(-1);
}

if ((out_ptr=fopen("c-progs/3-class.bm.dat","w+"))==NULL)
{
printf("I’m not able to open the output file\n");
exit(-1);

}

rewind(in_ptr);

fprintf(out_ptr,"Line# f1 £2 f£3 f4 f4 f6 f7 f8 f£9
£f10 f11 f£12 f13 f14 f£15 £16 C1 C2 C3 \n");

Read all features into an array

for (x = 0; x < countall; x++)

fscanf (in_ptr,"%d /d %d %d %d %d %d %d %d %d %d %d %d %d
% %4 %d %d Ud %d", &features [x][0],&features [x][1],
&features[x] [2] ,&features [x][3],&features [x] [4],&features
(x] [5] ,&features [x][6],&features(x][7],&features [x][8],
&features [x][9],&features [x][10],&features [x]([11],
&features[x] [12], &features([x][13], &features[x]([14],
&features[x] [15] ,&features[x] [16],&features[x] [17],
&features[x) [18]) ,&features[x] [19]);
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/ R e N S T S S S e T S S S s T s Ss s s sa s s T RS s sSESEsssss =S

loop (countall){
vhile{

if(used[(idx = (int)((((float)rand())/RAND_MAX) *

(countall - 1) + 0.5))]== 0)
{
used [idx] = 1;
printf("%d \n",idx);
order [j] = idx;

j++s
break;
}
}
}
/*==================================================
Print random vectors to a file
=========================================‘—'========*/
y=0;
x =0;
loop (countall)
{
x=order[y];

fprintf (out_ptr, "%d /d /d %d %d %d %d %d %d %d %d %d %d

% %d %d %d %d %4 %d \n", features [x][0],features [x][1],
features [x] [2],features[x] [(3],features [x][4], features [x][5],
features [x] [6],features(x)[7],features [x][8],features [x][9],
features [x][10],features(x](11], features [x][12],features

[x] [13] ,features {[x] [14),features [x][15],features(x][16],
features [x][17], features[x][18],features([x][19]);

) AR

}
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/ P T oo 23 T 2 2 23X T 1+

Close Files

fclose(in_ptr);
fclose(out_ptr);
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D.5 Shuffle Program for Neural Graphics Data Files

Purpose: This program reads a Neural Graphic fact file and
shuffles the facts (vectors) so as to create a random fact file
for training in the Neural Graphic simulator. This program is
limited to a three-class problem, but can be extended to more
classes with little modification.

Date: 5 June 1992

Author: Capt James Calvin
Pt 433 ot e R A 3 3 St 3 T i Sttt 1+ 3 3 3 /

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#define loop(A) for(i = 0; i < (A); i++)
float temp_1;

int iseed;

FILE *in_ptr, *out_ptr;

int x, y, dimension=17, i=0, j=0, idx=0, count=0, countall=0;
int vector([20], used[6000], order[6000];

int no_of_vectors = 5795;

int array_i;

int *array_prt[20];

int features[5795] [18];
iseed = 2;
srand(iseed);

countall =540;
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count = 60;

/ e Ty ey e
Open Files
s==sssassss===s=o==sXk /

/*--Open temp file (ng_3class.dat) and open an output file
(3-class_ng.dat)--*/

if((in_ptr = fopen("c-progs/ng_3class.dat","r")) == NULL){
printf("I’m not able to open the input file\n");
exit(-1);
)

if ((out_ptr = fopen("c-progs/3-class.ng.dat", "w+")) == NULL){
printf("I’m not able to open the output file\n");
exit(~1);

}
rewind(in_ptr);
/*===========================================================
Print a header for the output file
fprintf(out_ptr,"%d %d 16 3 \n", countall, count);
/*===========================================================

for (x = 0; x < countall; x++)
fscanf (in_ptr,"/id %d %d %d %d %d %d 4d 4d %4d 4d /4d Ud Ud
% %4 %d %dv, &features [x][0],&features [x][1],&features
[x] [2] ,&features[x] [3], &features [x][4],&features [x][5],
&features [x] [6],&features(x][7],&features [x] (8],
&features [x][9]),&features([x][10], &features([x][1i],
&features[x] [12], &features[x][13],&features [x][14],
tfeatures[x] [15]), &features [x][16],&features[x][17]);
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Randomize the order of the feature vectors

j=0;
loop (countall){
while(1){

if(used[(idx = (int)((((float)rand())/RAND_MAX) =*
(countall - 1) + 0.5))]== 0)

{

used [idx] = 1;

printf("j4d \n",idx);

order [j] = idx;

j++;
break;
}
}
}
/*=============================================
Print random vectors to a file
y=0;
x=0;
loop (countall){
=order [y] ;
fprintf (out_ptr, "/d %d %d %d %d %d %d %d %d %d 4d %d %d
% %d %d %d %d \n", features [x][0],features [x][1],
feature(x] [2] ,features[x] [3],features [x][4],features([x][5],
features[x] [6],features[x] [7]),features[x] [8],features[x] [9],
features([x] [10] ,features [x)[11],features [x][12],features
[x][13],features [x][14]),features [x][15],features [x][16],
features [x][17]);
yH+s
}
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fclose(in_ptr);
fclose(out_ptr);
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Appendix E. C Programs to Normalize the Data

E.1 Introduction

This appendix contains two C programs for normalizing the iBrainMaker and
Neural Graphics feature vectors.

E.2 Normalization and Dynamic Ranging for iBrainMaker Format

/¥===s====ssccs==sssscszsssssosssssssSssSsossSSssssSsssssssss=s===sxk
/*=====

/#=====  THIS PROGRAM WAS WRITTEN BY DON WILLIS, GE09iD, AND IT
/*===== WAS MODIFIED BY JAMES CALVIN, GE92D. THE PROGRAM
/*===== STATISTICALLY NORMALIZES THE DATA SETS ACCORDING TO A
/#=====  MEAN AND VARIANCE GAUSSIAN DISTRTIBUTION

/*=====
/¥====s=ss=s=sssssss=sssossssSSsESSTsssSsSsssSssssSsSsssssss=s=ssssek/
/*====s===s=a==szzss=s==cs=sssoos=s=szsssssssssssassssssossssooss==aak
/x=== System includes =======s===zs===ss==szss=sssss=sosssssso=msok/
/#¥===========csssssssozsssoonsssssSsoossSsSossssssssSsssssssssss=s=mok

#include <stdio.h>
#include <math.h>

void main (argc,argv)
int argc;
char *argv(];

/*=== local variables ===x/
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FILE *input;
char infile[50];

FILE *output;

char outfile[50];

float trash, value, max = 0;

char *s;

float trash,value;

double maxi=0,max2=0,max3=0,max4=0,max5=0;

double max6=0,max7=0,max8=0,max9=0,max10=0,max11=0;
double max12=0,max13=0,max14=0,max15=0,max16=0;
double f1,f2,£3,f4,1f5,16,f7,£8,f9,f10,f11,£12,£13,£14;
double £15,£16;

float deviation[INPUTS], average[INPUTS];

int i, j, inputs, outputs, ivalue;

int countl, count2, count, waste, temp;

float valuel, value2, value3;

printf("Enter the number of inputs then the number of
outputs.\n");

scanf ("%d %d", &inputs, &outputs);

printf("Enter total number of training/testing vectors.

\n");
scanf(")d", &count);

fflush(stdin);

/*=== did user specify an input file ====x/

if (arge != 2)
{
printf ("\n\nUsage -> stat-norm <filename>\n\n");
/*=== exit after pointing out the error ===/
exit (1000);
}
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/*=== user did specify an input file ===%/

/¥========z=z=z===s==z==z==zz=zcsczss=================z===% /
/*=== Open Input File ===x/
/¥=========zzzz=z====z=zzz=z==zzz=z=z=z==zs=z====z=====c==zc=z% /

printf ("\nOpening Input File: ¥s\n\n", infile);

if (!(input = fopen(infile, "rb"))){
p-1ntf ("\nCarn’t open input file: %s\n\n", infile);
exit (2000);

}

if (inputs < 0 || outputs < 0){
printf ("One of the header inputs is negative\n\n");
exit (3000);

}

printf ("There are ’d training/testing vectors\n", count);

printf ("There are %d inputs\n", inputs);

printf (“There are Jd outputs\n\n", outputs);

/*=== initi:lize things ===x%/

for (i = 0; i < inputs; i++)
average[i] = deviation[i] = 0.0;

/*=== loop until all data has been read in ===x/

printf ("Reading the Data\n\n");

fscanf (input,"Vs %s %s %s %s Ys Ys Us s /s Y%s s Us Us Us
%8 %s %s Y%s %s \n", &s, &s, &s, &s, &s, &s, &s, &s, &s, &s,
&s, &s, &s, &s, &s, &s, &s, ks, &s, &s);

fflush(stdin);
for (i = 0; i < count; i++){




fscanf (input, "%d ", &trash);/* read line counter */
for (j = 0; j < inputs; j++){
fscanf (input, "%f ", &value);
average[j] += value;

}

fscanf (input, "%d %d %d \n", &trash, &trash, &trash);
}
fclose (input);
/*=== calculate the averages ===x/

printf ("Calculating Averages\n\n");
for (i = 0; i < inputs; i++)
average[i] /= (float)count;

/*=== Re-open the input file ===x/

printf ("Re-Opening Input File: ¥%s\n\n", infile);

if ('(input = fopen(infile, "rb"))){
printf ("\nCan’t re-open input file: %s\n\n", infile);
exit (2000);

}
/*=== loop until all data has been read in ===x/
/ P TP P T R S P P P T L P P P P e R P P P P P /

fscanf (input,"%s %s %s %s %s %s %s %s %s %s ¥s Us s Us Us
%s %8 %s %s %s \n", &s, &s, &s, &s, &s, &s, ks, &s, &s, &s,
&s,bs,ks,ks,85,48,45,85,48,88) ;

fflush(stdin);
printf ("Reading the Data\n\n");
for (i = 0; i < count; i++){
fscanf (input, "Jd ", &trash);
for (j = 0; j < inputs; j++){
fscanf (input, "%f ", &value);
value -= average(j];




value *= value;
deviation[j] += value;

}

fscanf (input, "%d %d %d \n", &trash, &trash, &trash);
}
fclose (input);
/*=== calculate the standard deviation ===x/

printf ("Calculating Standard Deviations\n\n");
for (i = 0; i < inputs; i++){
deviation[i] /= count - 1;
deviation[i] = (float)sqrt((double)deviation[i]);

}
[*¥=== make output-file name z==x/

sprintf (outfile, ")s.sn", argv[1]l);

/ R S S S S S S T R T T T s a T sk /
/*=== Open Output File ===x/

printf ("Opening Output File: ¥%s\n\n", outfile);

if (!(output = fopen(outfile, "wb"))){
printf ("\nCan’t open output file: %s\n\n", outfile);
exit (2000);

}

/ R s e T T R nennssnrmmmk /

/*=== Re-open the input file ===/

J¥==cazzezzsnrmasscooaczzscosssSSsscssssSossexssosnssk /

printf("Re-Opening Input File (last time):)s\n\n",infile);
if (!(input = fopen(infile, "rb"))){
printf ("\nCan’t re-open input file: Js\n\n", infile);
exit (2000);
}
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/
/*=== read data in, modify it, save it back out ===x%/

printf ("Reading, Modifying and Re-Saving the Data\n\n");
fscanf (input,"%s %s %8s %s %s %s %s %s %s %s /s %s %s /s s
%s %s %s %s %s \n", &s, &s, &s, &s, &s, &s, &s, &s, &s, &s,
&s, &s, &s, &8s, &s, &s, &s, &s, &s, &s);

fflush(stdin);
for (i = 0; i < count; i++){
fscanf (input,")d",&ivalue);
fprintf (output,"id",ivalue);
for (j = 0; j < inputs; j++){
fscanf (input,"/f",&value);
value -= averagel(j];
value /= deviation(j];
fprintf (output,"%f",value);
}
fscanf (input,")d %d %d \n",&ivaluel,&ivalue2,&ivalue3);
fprintf(output,")d %d %d \n",ivaluel,ivalue2,ivalue3);

}

fflush(output);

/ *=============================================.“======* /
/*===Normalize Data Between -1 and i=s==s===s=========x/

/*====================================================*/

/*=== make output-file name ===x/

/*=======zz======zz==s===cz=== =sssr=====x /

sprintf (infile, "%s.sn", argv(1]);
sprintf (outfile, "%s.n", argv([il]);

/*===..-..======—--——-===========:====================*/

/*=== Open Output File ===/

/ R R S RS ST EsEs g /

printf ("Opening Output File: ¥%s\n\n", outfile);
if (!(output = fopen(outfile, "wb"))){
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printf ("\nCan’t open output file: ¥%s\n\n", outfile);
exit (2000);

}
/*=== Re-open the input file s==x/

printf ("Re-Opening Input File (last time):%s\n\n",infile);
if (!(input = fopen(infile, "rb")))}{
printf ("\nCan’t re-open input file: %s\n\n", infile);
exit (2000);

}
/*=== read data in, modify it, save it back out ===x%/

printf ("Reading the Data\n\n");
for (i = 0; i < count; i++){
fscanf (input, "J)d ", &ivalue);
fscanf (input, “Y1f %1f %1f %1f %1f %1f %1f %1f %1f %1f
%f A1f ALE ULE YAf 41fv, &f1,&f2,&f3,&f4,&f5,8f6,
&f7,&£8,&£9, 410,511 ,&£12,8£13,8££14,&£15,8£16);
if (fabs(fi) > max1)
max1l = fabs(f1);
if (fabs(f2) > max2)
max2 = fabs(£2);
if ( fabs(£3) > max3)
max3 = fabs(f3);
if (fabs(f4) > max4)
max4 = fabs(f4);
if (fabs(f5) > max5)
max5 = fabs(f5);
if (fabs(f6) > max6)
max6 = fabs(£6);
if (fabs(£f7) > max7)
max7 = fabs(£7);
if (fabs(f£8) > max8)
max8 = fabs(f8);
if (fabs(£9) > max9)
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max9 = fabs(f9);
if (fabs(£10) > maxiQ)
maxi0 = fabs(£10);
if (fabs(f11) > maxiil)
maxil = fabs(fi1);
if (fabs(£f12) > max12)
maxi2 = fabs(£f12);
if (fabs(£f13) > maxi3)
max13 = fabs(f13);
if (fabs(fi4) > maxi4)
maxi4 = fabs(f14);
if (fabs(f£f15) > maxib)
max15 = fabs(f15);
if (fabs(£16) > max16)
maxi6 = fabs(f16);
fscanf (input,"%f %f %f \n", &valuel, &value2,
&value3);
}
fseek(input,0,0);

/*=================- =========================:=======*/

/*=== read data in, modify it, save it back out ===x%/

/*_-__-_==================================_========_--*/

printf ("Reading, Modifying and Re-Saving the Data\n\n");

/*********************************************#*****************

* Printing a header for a 3-class problem

****************#*****#************#*******#*******************/

fprintf(output,"Line# f1 f2 £3 f4 £5 f6 £7 £8 f£9

f10 f11 f£12 £13 f14 f15 £16 Ci1 C2 C3 \n");

for (i = 0; i < count; i++){
fscanf (input, ")d ", &ivalue);
fprintf (output, "%d ", ivalue);
fscanf (imput, "1f %1f %1f %1f %1f %1f %1f %1f %1f
%Lf %1t 41f %1f %Lf %L A1fv, &f1,&f2,&f3,&f4,8f5,
&f6, &f7, &£8, kf9, &f10, &fi1, &f12, &£13, &f14,
&£15, &£16);
f1 /= maxi;
if (£1 >= 0.0)
£1 += 0.0005;
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else
£1 -+ 0.0005;
2 /= max2;
if (£2 >= 0.0)
£2 += 0.0005;
else
£2 -+ 0.0005;
£3 /= max3;
if (£3 >= 0.0)
£3 += 0.0005;
else
£3 -+ 0.0005;
f4 /= max4;
if (£f4 >= 0.0)
£4 += 0.0005;
else
£f4 -+ 0.0005;
£5 /= max5;
if (£5 >= 0.0)
£5 += 0.0005;
else
£5 -+ 0.0005;
f6 /= max6;
if (£6 >= 0.0)
£6 += 0.0005;
else
£6 -+ 0.0005;
£7 /= max7;
if (£7 >= 0.0)
£7 += 0.0005;
else
£7 -+ 0.0005;
£8 /= max8;
if (£8 >= 0.0)
£8 += 0.0005;
else
£8 -+ 0.0005;
9 /= max9;
if (£9 >= 0.0)
£9 += 0.0005;
else
19 -+ 0.0005;
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4

£10 /= max10;
it (£10 >= 0.0)
£10 += 0.0005;
else
£10 -+ 0.0005;
i1 /= maxii;
if (f11 >= 0.0)
£11 += 0.0005;
else
f11 -+ 0.0005;
£12 /= max12;
if (£12 >= 0.0)
£12 += 0.0005;
else
£12 -+ 0.0005;
£13 /= max13;
if (£13 >= 0.0)
£13 += 0.0005;
else
£13 -+ 0.0005;
f14 /= maxi4;
if (f14 >= 0.0)
£14 += 0.0005;
else
£14 -+ 0.0005;
£15 /= maxi$5;
if (£15 >= 0.0)
£15 += 0.0005;
else
£15 -+ 0.0005;
£16 /= max16;
if (£f16 >= 0.0)
£16 += 0.0005;
else
£16 -+ 0.0005;

fprintf (output, " %.31Z %.31f %.31f %.31f %.31f
%.31f %.31f %.31f %.31f %.31f %.31f %.31f %.31f
%.31f %.31f %.31f v, £1,£2,£3,f4,f5 ,£6,£7,£f8 ,f9,
£10,£11,£12,£13,£14,£15,£16);
fscanf (input, "“if 4f %f \n", &kvaluel, &value2,
&value3);
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fprintf (output, “%4.1f %.1f %.1f \n", valuel,value2,
value3);
}

fclose (input);
fclose (output);

/*=== we’re done ===x%x/
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E.8 Normalization and Dynamic Ranging for Neural Graphics Format

/*===sss=sssssssosssssSSSSSSSSSSTSSSSSSSSSSSSZSSSSSSTSESSSSSSSTSTES
[ e=====

/*===== THIS PROGRAM WAS ORIGINALLY WRITTEN BY DON WILLIS, GEO91D,
/*===== AND IT WAS MODIFIED BY JAMES CALVIN, GE92D. THE PROGRAM
/#*=====  STATISTICALLY NORMALIZES THE DATA SETS ACCORDING TO A
/*===== MEAN AND VARIANCE GAUSSIAN DISTRIBUTION, AND THEN IT RE-
/*===== DUCES THE DYNAMIC RANGE TO -1.0 TO 1.0.

[ R=====
/*¥======s=sssss====sssssssssooSSoESSSSSSSSSSEESSESRsSSSSSS=ssSssssssS
/¥=====s=s=s===ssssssssszzzsssssssssSSS=sSsSssSSSSSsSSsSssssssosos==ss
[x=== System includes ===s====s=s==c=SSTSSITSSSSSSSSSSSSSISS==SSsS
/*================================================================*/

#include <stdio.h>
#include <math.h>

/®k===s====s=c====s=s=====sss=ssokx /
/*=== Defines ===============*/
/*=============================*/

void main (argc,argv)
int argc;
char *argv(];

FILE *fopen();

FILE *input, *fopen();
char infile[50];

FILE *output;

char outfile[50];
float trash,value;
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double max1=0,max2=0,max3=0,max4=0,max5=0;

double max6=0,max7=0,max8=0,max9=0,max10=0,max11=0;
double max12=0,max13=0,max14=0,max15=0,max16=0;

double £1,£f2,£3,f4,f5,f6,f7,£8,£f9,£f10,f11,£12,£13,f14;
double £15,f16;

float deviation[INPUTS], average[INPUTS];

int i, j, inputs, outputs, ivalue;

int countl, count2, count, waste, temp;

/*=== did user specify an input file =z==x%/

if (arge != 2)

{
printf (“\n\nUsage -> stat-norm <filename>\n\n");
/*=== exit after pointing out the error ===x/
exit (1000);

3

/*:=========sz===:=s==========s:s==s========ss¢c=s===:*/

/*=== user did specify an input file ===x/

strcpy (infile, argv[1]);/* use inputted name as base */

/*sasssc::ssz:===:=======:========s======:=zs==s======*/

/*=== Open Input File sz=x/

printf ("\nOpening Input File: ¥s\n\n", infile);
it (!(input = fopen(infile, "rb")))

{
printf ("\nCan’t open input file: %s\n\n", infile);
exit (2000);

}

/*=== read the header information ===x/

/*s:ss===s==============z==========:====:==========:ss*/

fscanf (input,"%d %d %d %d\n",&counti,&count2,&inputs,
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&outputs);
if(countl < 0 || count2 < 0 || inputs < 0 || outputs < 0)
{

printf (“One of the header inputs is negative\n\n");

exit (3000);

3
printf ("There are %d training vectors\n", countl);
printf ("There are %d test vectors\n", count2);
printf ("There are %d inputs\n", inputs);
printf ("There are )d outputs\n\n", outputs);
count = countl + count2;

/*==s====z==z===s=======s=======zxz=zessssssssssoxzsszesssk
/*=== initialize things s==x/
/#==m=========z=======ssss==s=z=s===ssSSSsssssszsszzoxk [

for (i = 0; i < inputs; i++)

{
average[i] = deviation[i] = 0.0;
}
/ R R S S S E SRS SES ST EET /
/*=== loop until all data has been read in ===x/

/ R T e e T R RS SRR E /

printf ("Reading the Data\n\n");
for (i = 0; i < count; i++)

{
fscanf (input,"%d ",&trash);/* read line counter */
for (j = 0; j < inputs; j++)
{
fscanf (input,"%f ",&value);/* read float values */
average[j] += value;
}
fscanf (input, "%d \n", &ivalue);
}

fclose (input);

/*=== calculate the averages s==x/
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printf ("Calculating Averages\n\n");
for (i = 0; i < inputs; i++)

{
average[i] /= (float)count;
}
/*=== Re-open the input file ===x/

printf ("Re-Opening Input File: %s\n\n", infile);
if (!(input = fopen(infile, "rb")))

{
printf (*\nCan’t re-open input file: %s\n\n", infile);
exit (2000);
}
/*====================================================*/
/*=== throw away the header information this time ===x/

fscanf (input,"%d /d %d %d\n", kwaste,&waste,&waste,&waste);

/*====================================================*/
/*=== loop until all data has been read in ===x/

printf ("Reading the Data\n\n");
for (i = 0; i < count; i++)

{
fscanf (input, "%d ", &trash);/* read line counter */
for (j = 0; j < inputs; j++)
{
fscanf (input,"%f",&value);/* read values */
value -= average[j]; /*subtract off the average*/
value *= value; /* square the result */
deviation[j] += value;/*hang onto it until all donex*/
}
fscanf (input, "%d \n", &ivalue);
}

fclose (input);

98




/*=== calculate the standard deviation ===x/

printf (“Calculating Standard Deviations\n\n");

for (i = 0; i < inputs; i++)

{

deviation{i] /= count - 1;

deviation[i] = (float)sqr*((double)deviation([i]);
}
/*====================================================*/
/*=== make output-file name ===x/

sprintf (outfile, "%s.sn", argv[i]);

/*=== Open Output File ===x/
/*====================================================*/

printf ("Opening Output File: %s\n\n", outfile);
if (!(output = fopen(outfile, "wb")))

-}

{
printf ("\nCan’t open output file: %s\n\n", outfile);
exit (2000);
/*====================================================*/
/*=== Re-open the input file ===/

printf("Re-Opening Input File (last time):%s\n\n",infile);
if (!(input = fopen(infile, "rb")))
{
printf ("\nCan’t re-open input file: %s\n\n", infile);
exit (2000);
}

/ RN e A R R S R EE SRS ERCEEE SRRk /

/#=== read and save header s=zk/
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fscanf (input,"%d %d %d %d\n",&countl,&count2,tinputs,
&outputs);

fprintf (output,"%d %d %d %d\n",counti,count2,inputs,
outputs);

/*=== read data in, modify it, save it back out ===x/

printf("Reading, Modifying and Re-Saving the Data\n\n");
for (i = 0; i < count; i++)
{
fscanf(input,")d ",&ivalue);/*read line counter/
fprintf (output,"%d *,ivalue);/*save line counterx/
for (j = 0; j < inputs; j++)
{
fscanf (input,"%f" ,&value);/* read float value */
value -= average[j];/* modify the value */
value /= deviation[j];
fprintf(output,"%f",value);/*save modified valuex/
}
fscanf (input, "/d \n", &ivalue);
fprintf (output, "%d \n", ivalue);
}
fflush(output);

/*===Normalize Data Between -1 and 1===========z=c=====x/

/*============s=====:=:=szzs==s=======================*/

/ R R R R R eSS EE ek /

/*=== make sutput-file name ===x/
=8====================*/

/#sssss:ssaac:ssss:sz.ss

sprintf (infile, "%s.sn", argv[i]);
sprintf (outfile, "%s.n", argv([i]);

/ R R R eSS RS EE TRk /

/*=== Open Output File ===k /

/*ssaa-ssa:czsszszzsa:ssss=======a==:=================*/
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printf ("Opening Output File: ¥s\n\n", outfile);

if (!(output = fopen(outfile, "wb")))

{
printf ("\nCan’t open output file: %s\n\n", outfile);
exit (2000);

}
/*=== Re-open the input file ===x/

printf("Re-Opening Input File (last time):%s\n\n",infile);
if (!(input = fopen(infile, "rd")))
{
printf ("\nCan’t re-open input file: %s\n\n", infile);
exit (2000);

}
/%=== read the header ===x/

T s o e s e S i s S S T S S SIS S S D e e e e e S S D S S S D S S S i o S s . S s S S S S

fscanf (input,"/d %d %d %d\n",&countl,&count2,&inputs,
&outputs);

/*=== read data in, modify it, save it back out ===x/
/ P T P T T T Y TP P P T S T T P T e D T P P T P /
printf ("Reading, Modifying and Re-Saving the Data\n\n");
for (i = 0; i < count; i++){
fscanf (input, "/d ", &ivalue); /* read line counter */
fscanf (input, “%1f J1f Y1f J1f J1f %1f J1f 41f %1f J1f
%1t %1f 41f %1 LLf J1fv, &f1,&f2,&f3,&f4,815,kf6,
&£7,8£8,8£9,8£10,&F11 ,&£12,8£13,&£14,&£15,21£16);
if (fabs(f1l) > maxi)
maxl = fabs(f1);
if (fabs(£2) > max2)
max2 = fabs(£2);
if (fabs(£3) > max3)
max3 = fabs(£3);
if (fabs(f4) > max4)
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max4 = fabs(f4);
if (fabs(fS5) > max5)
max5 = fabs(£f5);
if (fabs(£f6) > max6)
max6 = fabs(f6);
if (fabs(£7) > max7)
max7 = fabs(f7);
if (fabs(£8) > max8)
max8 = fabs(f8);
if (fabs(£f9) > max9)
max9 = fabs(f9);
if (fabs(£f10) > maxi0)
max10 = fabs(f10);
if (fabs(fi11) > maxil)
maxil = fabs(fi1);
if (fabs(£f12) > maxi2)
maxi2 = fabs(f12);
if (fabs(£f13) > maxi13)
maxi3 = fabs(£13);
if (fabs(£i4) > maxi4)
maxi4 = fabs(f14);
if (fabs(£15) > maxi$5)
maxi5 = fabs(£15);
if (fabs(£16) > maxi6)
max16 = fabs(£16);
fscanf (input,"%d \n", &ivalue);

}

fseek(input,0,0);
J¥==ssssccsszzssooorzssssssssoooooooozscrsssssssns =%/
/*=== read and save header ===x/

/*=====- -============================================*/

fscanf (input,"%d %d %d %d\n",&counti,&count2,&inputs,
&outputs);

fprintf (output,"%d %d %d %d\n",counti,count2,inputs,
outputs);

/*8==:=s===================---..===============z===s==*/

/#*=== read data in, modify it, save it back out i A
/*=s=ss:s:=ss=s==as=========a==========s====s=:=======*/
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printf ("Reading, Modifying and Re-Saving the Data\n\n");

for (i = 0; i < count; i++){

fscanf (input, "Jd ", &ivalue);/*read line counter*/
fprintf (output, “%d ", ivalue);/*save line counter*/
fscanf (input, "%1f J1f %1f %1f %1f J1f %1f 1f %1f
%1t ALf %Lf A1f %L Y1f Y1f“, &f1,&f2,&f3,&f4,&f5,&f6,
&£7, &£f8, &£9, &£f10, &f1l1, &f12, &f13, &f14, &f15, &f16);
f1 /= maxi;
if (£1 >= 0.0)

f1 += 0.0005;
else

f1 -+ 0.0005;
£2 /= max2;
if (£2 >= 0.0)

£2 += 0.0005;
else

£f2 -+ 0.0005;
£3 /= maxi;
if (£3 >= 0.0)

£3 += 0.0005;

else
£3 -+ 0.0005;
f4 /= maxi;

if (£f4 >= 0.0)
4 += 0.0005;

else
£4 -+ 0.0005;
£5 /= maxi;

if (£5 >= 0.0)
£5 += 0.0005;
else
£5 -+ 0.0005;
f6 /= maxi;
if (£6 >= 0.0)
£6 += 0.0005;
else
£6 -+ 0.0005;
£7 /= maxi;
it (£7 >= 0.0)
£7 += 0.0005;
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else
£7 -+ 0.0005;
8 /= maxi;
if (£8 >= 0.0)
£8 += 0.0005;
else
£8 -+ 0.0005;
f9 /= maxi;
if (£9 >= 0.0)
f9 += 0.0005;
else
9 -+ 0.0005;
£10 /= max1;
if (£10 >= 0.0)
£10 += 0.0005;
else
£10 -+ 0.0005;
f11 /= maxi;
if (£f11 >= 0.0)
f11 += 0.0005;
else
f11 -+ 0.0005;
£12 /= maxi;
if (£12 >= 0.0)
£12 += 0.0005;
else
£12 -+ 0.0005;
£13 /= maxi;
if (£13 >= 0.0)
£13 += 0.0005;
else
£13 -+ 0.0005;
£14 /= maxi;
if (£14 >= 0.0)
£14 += 0.0005;
else
£14 -+ 0.0005;
£15 /= maxi;
if (£15 >= 0.0)
£15 += 0.0005;
else
£15 -+ 0.0005;
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£16 /= maxi;
if (£16 >= 0.0)
£16 += 0.0005;
else
£16 -+ 0.0005;

fprintf (output, " %.31f %.31f %.31f %.31f %.31f
%.31f %.31f %.31f %.31f %.31f %.31f %.31f %.31f
%.31f %.31f %.31f ",f1,£2,£f3,f4,£f5,f6, £7,£8,19,
£10,f11,f12,f13,f14,£15,116);
fscanf (input, " %d \n", &ivalue);
fprintf (output, " %d \n", ivalue);

}

fclose (imput);

fclose (output);

/*====================================================*/
/*=== ye’re done ===x/

printf ("Finished.\n\n");
}

/ N s R T e . R ST ST s RS Tk /
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Appendix F. Neural Graphics Module Modification for ETANN Chip

Stmulation

F.1 Introduction

This appendix contains the backpropagation C module, jecbackprop.c, for Neu-
ral Graphics that was modified to emulate the sigmoidal transfer function and to limit
weight values to within ETANN’s dynamic range. The Neural Graphics executable
file name was changed from net to jecnet. Hence, jcbackprop.c along with modified
files saver.c, general.c, and makeinput.c are all the files affected by the ETANN em-
ulation. General.c and saver.c modifications were presented in Appendix B. Below
are the modifications to makeinput.c and backprop.c (note: backprop.c was replaced
with jcbackprop.c which is included below).

Replace "case CLASS" in makeinput.c with the following changes:
J T P P P e
case CLASS : loopi(output){ if(i==ctype)
doft [parameters.output-1-i] = 0.89;
else
doft [parameters.output-1-i] = -0.94;}

*************#*****#*******#*************#**************************/
Replace backprop.c with the following module and either rename the
file as jcbackprop.c (requires changing the makefile: renaming
executable command and adding jcbackprop.c) or leave alone and note
that the simulator is now operating only as an ETANN simulator.
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/#********************************t*************#**********#******

DATE: 1 Aug 1992
VERSION: 3

NAME: Module for Backprop

MODULE NUMBER: 1.6

DESCRIPTION: Using output, adjusts weights, & reduce error.

ALGORITHM: Modified Werbos Multilayer Perceptron Back
propagation.

PASSED VARIABLES: None

RETURNS: None

GLOBAL VARIABLES USED: Weight Vectors

GLOBAL VARIABLES CHANGED: Weight Vectors

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: None

CALLING MODULES: Main Loop

AUTHOR: Gregory L. Tarr
HISTORY: Modified by Capt James Calvin for ETANN chip
Simulation

#* % N ¥ OH X N R N OH K K OH X N OH O F N F OH N * X »

***#***********#****************************************************/

#include "definitions.h"
#include <math.h>

extern nnet *net;
extern setup parameters;
extern examplars, count;
extern void TRAIN_NULL(Q);
float calcy(),calem(),fixy(),calcy_linear();
float calcy_nomask(),calcy_linear_nomask();
float hardness = 1.0;
void TRAIN_LOWER_LAYER(),TRAIN_OUTPUT_LAYER(Q);
init_train_BACKPROP(){
int i;
init_net(parameters);
loopi(parameters.layers){
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net->layeri[i]->updater = TRAIN_LOWER_LAYER;
net->layeri[i]->eta[0] = 0.3;
net->layeri[i]->eta(1] = 0.7;
}
net->layeri[parameters.layers-1]->updater=TRAIN_OUTPUT_LAYER;
loopi(parameters.layers)
net->layeri[i]->propagate = calcy;
}
void TRAIN_OUTPUT_LAYER (1_on,1l_up)
layer *1_on,*1_up;{
int i,j,k,lower,upper;
float neta,momentum;
lower = 1_on->size_input;
upper = 1_on->size_output;
neta 1_on->eta[0]/(float)1l_on->size_input;
momentum = 1_on->eta[1];
dely(1l_on->output,net->doft,l_on->delta,upper);

/**Bias weights constrained between -15 and 15 for 6 ETANN biases**/

loopj (upper) {
if (fabs((double)l_on->thetal[jl) <= 15.0)
1_on->theta{j] = 1l_on->thetal[j] + neta * l_on->delta[j] ;
if (fabs((double)l_on->thetal[j]) > 15.0){
if (1_on->theta[j] >= 0.0) 1_on->theta[j] = 15.0;
if (l_on->theta[j] < 0.0) 1l_on->theta[j] = -15.0;
}

loopi(l_on->size_input){
/***Weights constrained between -2.5 and 2.5 for ETANN chipx**/

if (fabs((double)l_on->weights[j][i]) <= 2.50)
1_on->weights([j] [i] +=
neta * 1_on->delta(j] * 1l_on->input[i] * 1_on->mask([i];
if (fabs((double)l_on->weights[j][i]) > 2.50){
if (1_on->weights[j][i] >= 0.0) 1l_on->weights[j][i] = 2.50;
- if (1_on->weights(j] [i] < 0.0) 1_on->weights([j][i] = -2.50;
}
}
}
)
void TRAIN_LOWER_LAYER(1_on,1_up)
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layer *1_on,*1_up;{

int i,j,k,lower,upper;

float neta,momentum;

lower = 1_on->size_input;

upper = 1_on->size_output;

neta = 1_on->etal0]/1_on->size_input;

momentum = 1_on->eta[1];

delx(1_on->output,l_up->delta,l_on->delta,
1_up->weights,l_up->size_output,upper);

/**Bias weights constrained between -15 and 15 for 6 ETANN biases**/

loopj(upper) {
if (fabs((double)l_on->theta[j]) <= 15.0)
1_on->theta[j] = 1l_on->theta(j] + neta * 1_on->delta[j] ;
if (fabs((double)l_on->theta[j]) > 15.0){
if (1_on->theta(j] >= 0.0) 1l_on->theta[j] = 15.0;
if (1_on->theta[j] < 0.0) 1l_on->theta[j] = -15.0;
}

loopi(1l_on->size_input) {
/***x*Weights constrained between -2.5 and 2.5 for ETANN chip **%xx/

if (fabs((double)l_on->weights[j][i]) <= 2.50)
1_on->weights([j][i] += neta * 1l_on->delta(j] *
1_on->input[i] * l_on->mask([i];
if (fabs((double)l_on->weights[j][i]) > 2.50){
if (1_on->weights([j]l[i] >= 0.0) 1_on->weights[j][i] = 2.50;
if (1_on->weights(j]l[i] < 0.0) 1_on->weights[j][i] = -2.50;
}
}
}
}
float calcy(j,1_omn)
int j;
layer *1_on;{
int i,k,number;
float y;
return fixy(calcy_linear(j,1l_on),1.0);}
float calcy_linear(j,l_on)
int j;
layer #1_on;{
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int i;
float y;
y=0.0;
loopi(1l_on->size_input){ if(1l_on->mask[i] == 0.0) continue;
y +=1_on->input{i] #* 1l_on->weights[j][i];
}
y += 1_on->theta[j];
return y;

3

float calcy_nomask(j,l_on)

int j;

layer *1_on;{

int i,k,number;

float y;

y = calcy_linear_nomask(j,1l_on);
return fixy(calcy_linear(j,1_on),1.0);

3

float calcy_linear_nomask(j,l_on)

int j;

layer *1_on;{

int i,k,number;
float y;
y =0.0;
loopi(1l_on->size_input) {
y =y + 1 on->input[i] * 1_om->weights[j][il;
}
y =y + l_on->thetal[j];
return y;

3
/*#***********#***************#*********#*********#t************
* Modified Algorithm for ETANN Chip Simulation
****************************#**********#**********t*****#******#l

float fixy(y,hardness)

float y, hardness ;

{

float xx;

int i;

hardness = 1.74;

if (y > 8.0) return .89;

it (y < -8.0) return -.94;

return( 1.83/(1.0 + (float)exp(-(double)(hardness * y))) - .94);
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}

/#**#**************##***#****t**#*#****#******#***##**#*********##/
dely(y,doft,del,output) /* computer error vector for output */
float *y,*doft,*del; /* Interface requires computed output =*/
int output; /* Desired output and storage for error: del. =/
{

int i;
if (parameters.output_data == 1)
loopi(output) delf[i] = 0.1*(doft[i]l-y[il);
else
/**xx Derivative of ETANN transfer function ****/
loopi(output) del(i) = 0.95+(.94 + y[i])*(.89 - y[i))*(doft[i]l-y[i]);
}
dely_linear(y,doft,del,output)/*computer error vector for outputx*/
float *y,*doft,*del;/> Interface requires computed output */
int output; /* Desired output and storage for error: del. */
{
int i;
loopi(output) del[i] = (doft([i]-y[il)/(float)output;
}
delx(x,del,del_down,w,upper,lower)
float *x,*del,*del_down,**y;
int upper,lower;
{
float sum;
int i,j;
loopj(lower){
sum = 0.0;
loopi (upper){
sum = sum + delf[i] = w(i][j];
}
/***x Derivative of ETANN transfer function ***x/
sum = 0.95%(.94 + x[j])*(.89 - x[j]) *» sum;
del_down[j] = sum;
}
}
check_linear(){
if (parameters.output_data == 1)
{
net->layeri[parameters.layers-1]->propagate = calcy_linear;
}
}
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Appendix G. ETANN Characterization Tools

G.1 Introduction

The C programs in this appendix are only a sampling of the several programs
written to perform sigmoidal characterization of ETANN neurons. The general test
procedures were as follows: 1) run test programs to get data from eight ETANN
chips while varying the number of inputs to a single neuron; 2) separate the data
using the separate data program; 3) compute the average of eight chips using the
averaging data program; 4) calculate the MSE versus hardness parameter for the
collected data; and finally, 5) characterize the sigmoidal transfer function.

G.2 C Program to Collect Data from ETANN

J T s T e P s

* Program: Test to characterize ETANN transfer function using 2
inputs into one neuron.

*

* Date: 8 July 1992

*

* Author: Capt James Calvin

I e e e 2y

#include "tsil.h"

#include<stdio.h>

#include<math.h>

main()

{
REALS weight_value[SYNAPSES_PER_NEURON] ;
REAL8 bias_value [BIASES_PER_NEURON] ;
REAL8 input_value [NEURONS_PER_ARRAY];
REAL8 etann_output [NEURONS_PER_ARRAY] ;
REAL8 actual_bias[ACTUAL_BIASES_PER_NEURON];
REAL8 etann_weight [SYNAPSES_PER_NEURON] ;
REAL8S sigmoid_gain = 3.30;
REAL8 data = 1.50;
REALS sum({2]:

static REAL8 test_weight([1i] = {-2.5, -2.0, -1.5, -1.0, -.5, 0.0,
.5, 1.0, 1.5, 2.0, 2.5,};

static REAL8 testi_input(9) = {-1.0, -0.75, -.5, -.25, 0.0, .25,
.5, .75, 1.0};
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static REAL8 test2_input[9] = {-1.0, -0.75, -.5, -.25, 0.0,

.5, .75, 1.0};

FILE *out_ptr;
int v,X,y,2Z;
StatusT status;

out_ptr = fopen("test2.out","w");

/***********************#****************

* Initialize inputs and weights <o zero
*****#*#********************************/

for(x = 0; x < NEURONS_PER_ARRAY; x++)
input_value[x] = 0.0;

for(x = 0; x < SYNAPSES_PER_NEURON; x++)
veight_value([x] = 0.0;

/****************************************

* Connect the ETANN Chip
****************************************/

printf("\n connecting etann");

if (connect_etann()!=0K){
printf("\n error in connecting");
exit(0);

}

else
printf("\n successful connection");

/**************************************

* Set Sigmoid Gain
kAR Rk ok Rk ok Rk ok ko [

set_sigmoid_gain(sigmoid_gain);
T e

* Set Voltage References
ok ks Rk Rk ok ok ok [
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set_voltage_reference_input(data);
set_voltage_reference_output(data);

/***********#*******************

* Begin Test
Rk ok R Rokok Kk ok kK ok ok ok [

printf("\n Running Test");
for (w=0; w < 11; w+t){
wveight_value[0] = test_weight[vw];
weight_value[1] = test_weight([v];
set_weights(0,0,2,weight_value);
get_weights(0,0,2,&weight_value[0]);
for (y = 0; y < 9; y++){
input_value[0] = testi_input(y];
input_value[1] = test2_input(y];
write_neuron_inputs(0,2,&input_value[0]);
read_neuron_outputs(0,1,&etann_output[0]);
for (y =0; y < 2; y++)
sum[0] += weight_value(y] * input_value(y];
fprintf(out_ptr,"%f %4f \n",sum[0],etann_output[0]);
}
fprintf (out_ptr,"\n");

}

/********************#**********

* Disconnect ETANN
sk sk Aok sk ok ok ok ok ok ok ok ok ok ok ko ok /

printf("\n Disconnect ETANN");
disconnect_etann();

/******************#***********

* Close Files
L pr e —y

fclose (out_ptr);
fclose (outi_ptr);
}
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G.8 C Program to Separate Collected Data

g R e
* Program: Separate collected data.
* Date: 8 July 1992

* Author: Capt James Calvin
[ AR ks ok Rk Aok ok ok Rk Rk kR kR Rk kR Rk kA Rk ok ko k ik [

#include <stdio.h>
#include <math.h>

main()

{

FILE *in_ptr;

FILE *outi_ptr, *out2_ptr, *out3_ptr, *out4_ptr, *outb_ptr,
*out6_ptr, *out7_ptr, *out8_ptr, *out9_ptr, *outlO_ptr,
*outll_ptr;

int x;

float act_1[10], act_2[10], act_3[10], act_4[10], act_5[10];

float act_6[10], act_7[10], act_8[10], act_9[10], act_10[10],
act_11(10];

float out_1i[10], out_2[10], out_3[10], out_4[10], out_5[10];

float out_6[10], out_7[10], out_8[10], out_9[10], out_10[10],
out_11[10];

in_ptr = fopen("chiph02.dat","r");
if (in_ptr==NULL)
printf("error in file 1");

outi_ptr = fopen("hi.dat", "w");
if (outi_ptr==NULL)
printf(“error in outfile");

out2_ptr = fopen("h2.dat","w");
if (out2_ptr==NULL)
printf("error in outfile");

out3_ptr = fopen("h3.dat","w");

if (out3_ptr==NULL)
printf(“error in outfile");
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out4_ptr = fopen("h4.dat","w");
if (out4_ptr==NULL)
printf("error in outfile");

outS5_ptr = fopen("h5.dat", "w");
if (outS_ptr==NULL)
printf("error in outfile");

out6_ptr = fopen("h6.dat","w");
if (out6_ptr==NULL)
printf("error in outfile");

out7_ptr = fopen("h7.dat","w");
if (out7_ptr==NULL)
printf("error in outfile");

out8_ptr = fopen("h8.dat","w");
if (out8_ptr==NULL)
printf("error in outfile");

out9_ptr = fopen("h9.dat","w");
if (out9_ptr==NULL)
printf("error in outfile");

outi0_ptr = fopen("hi0.dat","w");
if (out10_ptr==NULL)
printf(“"error in outfile");

outii_ptr = fopen("hii.dat","w");
if (outii_ptr==NULL)
printf(“error in outfile");

for (x = 0; x < 9; x++)

fscanf(in_ptr,"%f %f \n", &act_i[x], &out_1i[x]);
fscanf (in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf (in_ptr,"%f %f \n“, &act_2[x], &out_2[x]);
fscanf (in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"%f %f \n", &act_3[x], &out_3[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)
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fscanf(in_ptr,"%f %f \n", &act_4[x], &out_4(x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)
fscanf(in_ptr,"%f %f \n", &act_S5[x], &out_5([x]);
fscanf(in_ptr,"\n");
for (x = 0; x € 9; x++)
fscanf(in_ptr,"if %f \n", &act_6[x], &out_6[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)
fscanf(in_ptr,"%f %4f \n", &act_7[x], &out_7[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)
fscanf(in_ptr,"%f %f \n", &act_8[x], &out_8[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)
fscanf(in_ptr,"%f %f \n", &act_9(x], &out_9(x]);
fscanf (in_ptr,"\n");
for (x = 0; x < 9; x++)
fscanf (in_ptr,"%f %f \n", &act_10[x], &out_10(x]);
fscanf(in_ptr,"\n");
for (x = 0; x € 9; x++)
fscanf(in_ptr,"%f %f \n", &act_1i[x], &out_11[x]);
for (x = 0; x < 9; x++){
fprintf(outi_ptr,"%f %f \n", act_1[x], out_1[x]);
fprintf(out2_ptr,")f %f \n", act_2[x], out_2(x]);
fprintf(out3_ptr,"4f %f \n", act_3[x], out_3[x]);
fprintf(outd_ptr,"%f 4f \n", act_4[x], out_4[x]);
fprintf(out5_ptr,"%4f %f \n", act_5[x], out_5[x]);
fprintf(out6_ptr,"%f %f \n", -act_6[x], out_6(x]);
fprintf(out7_ptr,"4f %f \n", act_7[x], out_7[x]);
fprintf(out8_ptr,"%f 4f \n", act_8[x], out_8(x]);
fprintf(out9_ptr,"%f %f \n", act_9[x], out_9[x]);
fprintf(out10_ptr,"%f %f \n", act.10[x], out_10(x]);
fprintf(outil_ptr,"4f %f \n", act_11[x], out_11[x]);

fclose (outi_ptr);
fclose (out2_ptr);
fclose (out3_ptr);
fclose (out4_ptr);
fclose (outS_ptr);
fclose (out6_ptr);
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fclose (out7_ptr);
fclose (out8_ptr);
fclose (out9_ptr);
fclose (outiO_ptr);
fclose (outii_ptr);
fclose (in_ptr);

}/* end main #*/
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G.4 C Program to Calculate Average Output of 8 Chips

PRl R R e s e T P 2 2 Y
/* Program: Calculate the average output of 8 ETANN chips.
/* Date: 7 July 1992

/* Author: Capt James Calvin
Y P T Ty

#include <stdio.h>
#include <math.h>

main()
{
FILE *ini_ptr, *in2_ptr, *in3_ptr, *in4_ptr;
FILE *in5_ptr, #*in6_ptr, *in7_ptr, *in8_ptr, *outi_ptr,
*out2_ptr;
int x = 0;

float act_avg[10], act_1[10], act_2[10], act_3[10]);
float act_4[10), act_5[10], act_6[10], act_7[10], act_8([10];

float out_avg[10], out_1[10], out_2[10], out_3[10], out_4[10];
float out_5(10], out_6{10], out_7[10], out_8[10), hardnees(10]:;

float actl, act2, act3, act4, act5, act6, act7, act8;
float outl, out2, out3, out4, outS, outé, out7, outs;

ini_ptr = fopen("a3.dat","r");
if (ini_ptr==NULL)
printf(“error in file 1");

in2_ptr = fopen("b3.dat","r");
if (in2_ptr==NULL)
printf(“error in file 2");

in3_ptr = fopen(“c3.dat","r");
if (in3_ptr==NULL)
printf(“error in file 3");

ind_ptr = fopen("d3.dat"."r"):/

if (in4_ptr==NULL)
printf("error in file 4");
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in5_ptr = fopen("e3.dat","r");
if (inS_ptr==NULL)
printf("error in file 5");

in6_ptr = fopen("£3.dat","r");
if (in6_ptr==NULL)
printf("error in file 6");

in7_ptr = fopen(“g3.dat","r");
if (in7_ptr==NULL)
printf(“error in file 7");

in8_ptr = fopen("h3.dat","r");
if (in8_ptr==NULL)
printf(“error in file 8");

outl_ptr = fopen("avg3.dat","w");
if (out1_ptr==NULL)
printf("error in outfile");

out2_ptr = fopen("hard.dat","a");
if (out2_ptr==NULL)
printf("error in hardness outfile");

for (x = 0; x < 9;x++){

fscanf(ini_ptr,"4f %f \n", &act_1[x], &out_1[x]);

printf(“"Values from file onme: %f %f \n", act_1[x],
out_1(x]);

fscanf (in2_ptr,"%f 4f \n", &act_2[x], &out_2[x]);

printf("Values from file two: %f %f \n", act_2[x],
out_2[x]);

fscanf(in3_ptr,"4f %f \n", fact_3[x], &out_3[x]);

printf(“"Values from file three: %f %f \n", act_3[x],

out_3([x]);

fscanf(ind_ptr,"%f %f \n", &act_4[x], &out_4(x]);

printf("Values from file four: %f %f \n", act_4[x],

out_4[x]);

fscanf(in5_ptr,"’f %f \n", &act_5[x], &out_5[x]);

printf("Values from file five: %f %f \n", act_S5[x],

out_5[x]);

fscanf (in6_ptr,"4f %f", &act_6[x], &out_6[x]);
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printf("Values from file six: %f %f \n", act_6[x],
out_6(x]);
fscanf(in7_ptr,"%f %f", &act_7([x], &out_7[x]);
printf("Values from file seven: Af %f \n", act_7[x],
out_7[x));
fscanf(in8_ptr,"%f %f", &act_8[x], &kout_8(x]);
printf(“Values from file eight: %f %f \n", act_8[x],
out_8([x]);

}

for (x = 0;x < 9;x ++){
act_avglx] = (act_1[x] + act_2[x] + act_3[x] + act_4[x] +
act_5[x] + act_6[x] + act_7[x] + act_8[x]) /
8.0;
out_avg[x] = (out_1[x] + out_2[x] + out_3[x] + out_4[x] +
out_S5[x] + out_6[x] + out_7[x]) + out_8[x]) /
8.0;
}

for (x = 0;x < 9;x ++){
fprintf (outl_ptr,"%.3f %.3f \n", act_avg[x], out_avg(x]);
printf("%.3f %.3f \n", act_avglx], out_avg(x]);
if (act_avg[x] != 0.0){
hardness[x] = -(float)log((double)((2/(out_avglx] + 1))
- 1)) / act_avglx];
fprintf (out2_ptr,"%f \n", hardness[x]);
printf (“%4f \n", hardness[x]);
}
}

fclose (ini_ptr);
fclose (in2_ptr);
fclose (in3_ptr);
fclose (in4_ptr);
fclose (in5_ptr);
fclose (in6_ptr);
fclose (in7_ptr);
fclose (in8_ptr);
fclose (outi_ptr);
fclose (out2_ptr);

}/* end main */
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G.5 C Program to Calculate MSE vs. Hardness Parameter

[k sk ok ok ok ek ok Rk kR kR ok ok sk ok ok Kok ko ok Kk
* Program: Program to calculate the total MSE vs. hardness.
* Date: 9 July 1992

* Author: Capt James Calvin
ek Aok ok ok ook ok ok koK ok ok ok Kok sk ks ok ok sk ok kR Rk ok ok ok ok ok /

#include <stdio.h>
#include <math.h>

main()

{

FILE *in_ptr, *out_ptr;
int x, y;

float act_1[10], act_2[10], act_3[10], act_4[10], act_5[10];
float act_6[10], act_7[10], act_8[10], act_9[10], act_10[10],
act_11[10];
float out_1[10], out_2[10], out_3[10], out_4[10], out_5[10];
float out_6[10], out_7[10], out_8[10], out_9[10), out_10[10],
out_11[10];
float error = 0.0, sum_error = 0.0, sigmoid(90],
hardness = 0.00;

/****************************************************************

% Open Files
B e e e ey

in_ptr = fopen("average.dat","r");
if (in_ptr==NULL)
printf("error in file 1");
out_ptr = fopen(“mse.dat","w");
if (out_ptr==NULL)
printf("error in outfile");

[ etk s se s st ek sk ke s ool sk s o o ook e ok sk ook e s s sl s ok ok ok ok ks sk ok ke ok ok sk ok ok ok K ok ok k

* Read in Data
AR Ak Aok AR A AR A A Koo ook oo ool sl s sk ok ok ol sk sk sk sk ok s sk ok ke sk ok ok /

for (x = 0; x < 9; x++)

fscanf (in_ptr,"%f %f \n", &act_1i[x], &out_1i[x]);
fscanf(in_ptr,"\n");
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for (x = 0; x < 9; x++)

ftscanf (in_ptr,"%Af f \n", &act_2[x], &out_2[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"%4f %f \n", &act_3[x], &out_3[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf (in_ptr,"%f %f \n", &act_4[x], &out_4[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"/f %f \n", &act_5(x], &out_5[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"%4f %f \n", &act_6[x], &out_6(x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf (in_ptr,"if %f \n", &act_7[x], &out_7[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"4f %f \n", &act_8[x], &out_8[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"%f 4f \n", &act_9[x], &out_9[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"%f %f \n", &act_10[x], &out_10[x]);
fscanf(in_ptr,"\n");
for (x = 0; x < 9; x++)

fscanf(in_ptr,"4f %f \n", &act_11[x], &out_11[x]);

/***********************#******************************#*******t

* Find Total MSE vs. Hardness Factor
T T T e e Y

for (y = 0; y < 90; y++){
hardness += 0.02;
sum_error = 0.0;
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*
act_1[x])) - 0.94;
error = out_1{x] - sigmoid(x];
e€ITOX *= errYor;
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SUM_error += error;
}
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*
act_2[x])) - 0.94;
error = out_2[x] - sigmoid[x];
error *= error;
SUm_error += error;
}
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*
act_3[x])) - 0.94;
error = out_3[x] - sigmoid([x];
error *= error;
SUM_error += error;

}

for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*
act_4([x])) - 0.94;
error = out_4[x] - sigmoid[x];
eITror *= error;
Sum_error += error;

}
for (x = 0; x < 9; x++){
gigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*

act_5[x])) - 0.94;
error = out_5[x] - sigmoid[x];
error *= error;

SUm_error += error;

3
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*

act_6[x])) - 0.94;
error = out_6[x] - sigmoid[x];
error *= error;
SUm_error += error;
}
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*
act_7[x])) - 0.94;
error = out_7[x] - sigmoid[x];

124




eITOr *= error;
sum_error += error;
}
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*
act_8([x])) - 0.94;
error = out_8(x] - sigmoid[x];
eITOr *= error;
SUmM_Eerror += error;
}
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1 + (float)exp(-(double)hardness*
act_9[x])) - 0.94;
error = out_9[x] - sigmoid[x];
error *= error;
Sum_error += error;

3
for (x = 0; x < 9; x++){
sigmoid[x] = 1.83/(1+(float)exp(-(double)hardness*

act_10[x])) - 0.94;
error = out_10[x] - sigmoid[x];
error *= error;
sum_error += error;
}
for (x = 0; x < 9; x++){
sigmoid([x] = 1.83/(1+(float)exp(-(double)hardness*
act_11[x])) - 0.94;
error = out_11[x] - sigmoid[x];
error *= error;
Sum_error += error;
}
sum_error /= 99;
fprintf (out_ptr,"%f %f \n", hardness, sum_error);

}

fclose (in_ptr);
fclose (out_ptr);

} /* end main */
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Appendix H. C Tools for INNTS

H.1 Introduction

This appendix contains a sampling of C programs used in research for inter-
facing the Neural Graphics simulator with INNTS software and hardware.

H.2 C Program to Write Neural Graphics’ Weights to ETANN

L T S
* Program: Write Neural Graphics’ Weights to ETANN Chip

* Date: 9 Aug 1992

* Author: Capt James Calvin

T O T P Ty
#include "tsil.h"

#include<stdio.h>

#include<math.h>

main()

{
REAL8 weight_value_layeri[16];
REAL8 weight_value_layer2[20];
REAL8 bias_value_layeri[i];
REAL8 bias_value_layer2[1];
REALB sigmoid_gain = 3.30;
REALS data = 1.50;
FILE *in_ptr,*out_ptr;
ORD2 w, x, y, 2z, inputs, outputs, hidden;
char str(80];
StatusT status;

if ((in_ptr = fopen("infile.wts","r")) == NULL){
printf ("I’m not able to open the imput file \n");
exit(-1);

}

printf("Enter number of inputs, a space, & number of

outputs.\n");

scanf("%d %d", &inputs, &outputs);

printf("Enter number of hidden neurons.\n");

scanf("%d", &hidden);

fscanf (in_ptr,"%s \n", str);
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/************************#************#*#

* Connect the ETANN Chip
ok ok ok Kok kR kR kR sk kR ok kR ok [

printf("\n connecting etann");

if (comnect_etann()!=0.){
printf("\n error in connecting");
exit(0);

}

else
printf("\n successful connection");
set_etann_gain(NORMAL_ETANN_GAIN);
set_weight_precision(MAX_PRECISION);

/**************************************

* Set Sigmoid Gain
sk sk ok ok ok ok ok Aok ok sk sk akok ok sk ok sk ok ok ok ok /

set_sigmoid_gain(sigmoid_gain);
set_voltage_reference_input(data);
set_voltage_reference_output(data);

/*****************************************

* Reading and Writing to Layer One
Aok akkok skl kAR kR ks kR ok ksl ok [

for (w = 0; w < hidden; w++){
for (x = 0; x < inputs; x++)
fscanf (in_ptr, "%1f", &weight_value_layeri[x]);
fscanf (in_ptr, "%1f \n", &bias_value_layeri[0]);
set_etann_parameters(0,FEEDFORWARD) ;
set_weights(w,0,inputs,weight_value_layeri);
set_bias_weights(w,0,1,bias_value_layerl);

}

/*********************************#*##****#********************

* Reading and Writing to Layer Two
L T e g e L e e e S S 2 ey

fscanf (in_ptr,"\n");
for (v = 0; w < outputs; w++){
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for (x = 0; x < hidden; x++)
fscanf (in_ptr,"41f", &weight_value_layer2(x]);

fscanf (in_ptr, "%1f \n", &bias_value_layer2[0]);
set_etann_parameters(0, FEEDBACK);
set_veights(w,0,hidden,weight_value_layer2);
set_bias_weights(w,0,1,bias_value_layer2);

}

fclose (in_ptr);

/*******************************

* Disconnect ETANN
koo ok Kok ok R ok sk oKk ok ok Aok ok ok ok /

printf("\n Disconnect ETANN");
disconnect_etann();
printf ("\n\n Press any key to continue...");
getch();

} /* end main */
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H.3 C Program to Write, Read, and Classify Input Data to ETANN

T e T e e 2 e 2L
* Program: Write Inputs to ETANN Chip, Read Outputs, and

* Classify the Winner

* Date: 4 Aug 1992

* Author: Capt James Calvin

T s e e T 2y
#include "tsil.h"

#include<stdio.h>

#include<math.h>

main()
{
REAL8 in_data[NEURONS_PER_ARRAY];
REALS out_data[NEURONS_PER_ARRAY];
REAL8 sigmoid_gain = 3.30;
REAL8 data = 1.50;
REAL8 max;
FILE *in_ptr,*out_ptr;
ORD2 w, x, y, inputs, outputs, hidden;
ORD2 counti[60],count2(60];
float class_winner, actual_class, percentage, junk;
int test_vectors = 60, total = 0, node,Z;

StatusT status;

if ((in_ptr = fopen("infile","r")) == NULL){
printf ("I’m not able to open the input file \n");
exit(-1);

}

if ((out_ptr = fopen(“outfile","w")) == NULL){
printf ("I’m not able to open the input file \n");
exit(-1);

}

printf("Enter number of inputs, a space, & number of
outputs.\n");

scanf("%d %d", &inputs, &outputs);

printf("Enter number of hidden neuroms.\n");

scanf ("%d", &hidden);
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/*************#************************t#

* Connect the ETANN Chip
T T Y S e ey

printf("\n connecting etann");

if (connect_etann() !=0K){
printf("\n error in connecting");
exit(0);

}

else
printf("\n successful connection");

set_etann_gain(NORMAL_ETANN_GAIN) ;

[ ek ks ke s s sk o o oo ok ok ok ok ok ok ks ok sk oo o ok s o o ok e ok

* Set Sigmoid Gain & Vref out/in
L e Y

set_sigmoid_gain(sigmoid_gain);
set_voltage_reference_input(data);
set_voltage_reference_output(data);

[ sk ok ok ok st e o i ok ok o ok o oo o o s o e s ke ok s ok e ok ok o s ko ok ok

* Begin Writing Inputs to ETANN
kR Rk R Rk kKR kR Rk ok /

printf("\n Writing inputs");

[ ekt s sde e e s e sk s s se sk ok ook sk ook o ks ke ok ok ok ke e okok ok ok ks

* JInitialize the Count
sk Aok kR kA ks ok ko ok ek ok ok ok [

for (x = 1; x <= outputs; x++){
countifx] = 0;
count2(x] = 0;

}

/*#********************#****#*#***t*******
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*  Writing Inputs
*****#*****************#*****************/

set_etann_parameters(0,FEEDFORWARD) ;
for (x = 0; x < test_vectors; x++){
fscanf (in_ptr,"if", &junk);
for (y = 0; y < inputs; y++)
fscanf (in_ptr,"%1f", &in_dataly]);
fscanf (in_ptr,")f \n", &actual_class);
write_neuron_inputs(0,inputs,in_data);
clock_feedback(1l);
read_neuron_outputs(0,outputs,&out_data[0]);
for (z = outputs - 1; z >= 0; 2--){
v = outputs - Z;
fprintf (out_ptr," Neuron Output for class %d = %.31f
" w, out_data(z]);
if ((w % 2) == 0) fprintf (out_ptr,"\n");
}

/***************************************************************#
* Classify the Output

L P 2 Y
/*Neural Graphics calls neuron O the last class (reverse logic)*/

max = =-1.0;
for (y = 0; y < outputs; y++){
if (out_dataly] >= max){
max = out_dataly];
node = y;
}
}
class_winner = (float)(outputs - node);
fprintf (out_ptr,"\n Desired Output = %.0f Winner = %.0f
\n\n", actual_class, class_winner);
if (actual_class == class_winner){
y = (int)class_wvinner;
counti(y] += 1;
total++;
}
for (y = 1; y <= outputs; y++)
if ((int)actual_class == y) count2(y] += i;
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/********##****************************************#*************

* Print the Output
T T T Ty

fprintf (out_ptr,"Total Number of Test Vectors = Jd \n",
test_vectors);
for (x = 1; x <= outputs; x++){
percentage = ((float)counti[x] / (float)count2{x])#*100;
fprintf (out_ptr,"Class %d: Total = %d Correct = %d
Percent = J.2f \n",x,count2[x],counti[x],percentage);
}
fprintf (out_ptr,"Total Number of Classified Right = %d \n\n",
total);
percentage = ((float)total / (float)test_vectors)*100;
printf ("\n\n Total Test Vectors = }d", test_vectors);
printf ("\n\n Total Classified Right = %d", total);
fprintf (out_ptr,"Percentage Right = %.2f \n", percentage);
printf ("\n\n Percentage Right = /,.2f ", percentage);

/*******************************

* Disconnect ETANN
T Y

printf("\n Disconnect ETANN");
disconnect_etann();
fclose (in_ptr);
fclose (out_ptr);
printf ("\n\n Press any key to continue...");
getch();

} /* end main */
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H.4 C Program to Write Neural Graphics’ Weights to EMB

/**##*#**********#**#*************t*****i*#tt**t*#********t*tt
* Program: Write Neural Graphics’ Weights to EMB

* Date: 27 Aug 1992

* Author: Capt James Calvin
************************************************************#/
#include "tsil.h"

#include<stdio.h>

#include<math.h>

main()

{
REALS weight_value_layeri(16];
REAL8 weight_value_layer2(35];
REAL8 bias_value_layeri([6];
REAL8 bias_value_layer2{6];
REAL8S bias;
FILE *in_ptr,*out_ptr;
ORD2 w, x, y, 2z, inputs, outputs, hidden;
char str[80];
StatusT status;

if ((in_ptr = fopen("infile.wts","r")) == NULL){
printf ("I’'m not able to open the input file \n");
exit(-1);

}

printf("Enter number of inputs, a space, & number
of outputs.\n");

scanf("%d %d", &inputs, &outputs);

printf("Enter number of hidden neuroms.\n");

scanf("%d", &hidden);

fscanf (in_ptr,"%s \n", str);

/**************#********#**********#***#*

* Connect the EMB
T L T e R 22 Y

printf("\n Place your EMB in the adapter socket, then press

a key...");
getch(); '
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if (connect_emb(i80170_NX) != OK){
printf("\n error in connecting");
exit(0);

3

else
printf("\n successful connection");
set_etann_gain (NORMAL_ETANN_GAIN);
set_weight_precision(MAX_PRECISION);

/*****************************************

* Reading and Writing to Layer Ome
Aok ok Ak Kok sk Rk Ak ok sk ok ok ok Kk ook ok

for (w = 0; w < hidden; w++){
for (x = 0; x < inputs; x++)

fscanf (in_ptr, "Alf", &weight_value_layeri[x]);
fscanf (in_ptr, "/4lf \n", &bias);
for (x = 0; x < 6; x++)

bias_value_layeri[x] = bias / 6.0;
set_etann_parameters(0,FEEDFORWARD) ;
set_weights(w,0,inputs,weight_value_layerl);
set_bias_weights(w,0,6,bias_value_layeri);

)

/**************************************************************

* Reading and Writing to Layer Two
***************************************************************/

fscanf (in_ptr,"\n");
for (w = 0; w < outputs; w++){
for (x = 0; x < hidden; x++)
fscanf (in_ptr,"%1f", &weight_value_layer2[x]);
fscanf (in_ptr, "%1f \n", &bias);
for (x = 0; x < 6; x++)
bias_value_layer2[x] = bias / 6.0;
set_etann_parameters(0, FEEDBACK);
set_weights(w,0,hidden,weight_value_layer2);
set_bias_weights(w,0,6,bias_value_layer2);
}

fclose (in_ptr);
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/*****#***#*t#**#************#**

* Disconnect ETANN
Aok AR Rk R kR kR KRRk ok [

printf("\n Disconnect EMB");
disconnect_emb();
printf ("\n\n Press any key to continue...");
getch();

} /* end main */
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H.5 C Program to Write, Read, and Classify Input Data to EMB

A T e e e e e S e St p Sl Lt
* Program: Write Inputs to EMB and Read Outputs
* Date: 27 Aug 1992

* Author: Capt James Calvin
Aok Aok ok kKR Rk ok ok kK kR ko kR kR sk kR k kR kR kR ko ok /

#include "tsil.h"
#include<stdio.h>
#include<math.h>

main()
{
REAL8 in_data[16];
REAL8 out_data[30];
REAL8 max;
FILE #*in_ptr,*out_ptr;
ORD2 w, x, y, inputs, outputs, hidden;
ORD2 counti[31],count2([31];
float class_winner, actual_class, percentage, junk;
int test_vectors = 750, total = 0, node,z;

StatusT status;

if ((in_ptr = fopen("infile","r")) == NULL){
printf ("I’m not able to open the imput file \n");
exit(-1);

}

if ((out_ptr = fopen("outfile","w")) == NULL){
printf ("I’m not able to open the input file \n");
exit(-1);

}

printf("Enter number of inputs, a space, & number of
outputs.\n");
scanf("%d %d", &inputs, &outputs);

£ T e R T I
* Connect the EMB
ook ek ook ok ok sk sk sk ok ok Kok ok sk ok ok ke kR ok ok ok ok ok ok ks /

printf("\n Place your EMB in the adapter socket, then press
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a key...");

getch();

if (connect_emb(i80170_NX) != OK){
printf("\n error in connecting");
exit(0);

}

else
printf("\n successful connection");

set_etann_gain(NORMAL_ETANN_GAIN);

/***********#****************************

* Initialize the Count
3k A Ao o o o ok ok o o ok ok e A o oK ok ok ok ok ok ok ok ok ok ook ok K ok /

for (x = 1; x <= outputs; x++){
counti[x] = 0;
count2(x] = 0;

/****************************************/

J A T e e
* Writing Inputs
Y/
printf("\n Writing inputs");
set_etann_parameters(0,FEEDFORWARD) ;
for (x = 0; x < test_vectors; x++){
fscanf (in_ptr,"/f", &junk);
for (y = 0; y < inputs; y++)
fscanf (in_ptr,"/1f", &in_dataly]);
fscanf (in_ptr,"%f \n", &actual_class);
vrite_neuron_inputs(0,inputs,in_data);
clock_feedback(1);
read_neuron_outputs(0,outputs,&out_data[0]);
for (z = outputs - 1; z >= 0; z--){
v = outputs - z;
fprintf (out_ptr," Neuron Output for class %d =
%.31f ",w, out_data[z]);
it ((w % 2) == 0) fprintf (out_ptr,"\n");
}
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J 23 3 ok o ke ok sk o o s o sl ok o o oo o ok o o ook kool o o o e oo o ook i o o o ks o e o ok ok ok ok o e oo ok
* Classify the Output
********##***************t***t#*******#*****#***t##**#t#****#ttt/

/* Neural Graphics calls neuron O highest class (reverse order)*/

max = -1.0;
for (y = 0; y < outputs; y++){
if (out_dataly] >= max){
max = out_data[y];
node = y;
}
}
class_winner = (float)(outputs - node);
fprintf (out_ptr,"\n Desired Output = %.0f Winner =
%.0f \n\n",
actual_class, class_winner);
if (actual_class == class_winner){
y = (int)class_winner;
counti[y] += 1;
total++;
}
for (y = 1; y <= outputs; y++)
if ((int)actual_class == y) count2[y] += 1;
}

/****************************************************************

* Print the Output
T L T e e T T 2y

fprintf (out_ptr,"Total Number of Test Vectors = %d \n",
test_vectors);
for (x = 1; x <= outputs; x++){
percentage = ((float)counti[x] / (float)count2{x])*100;
fprintf (out_ptr,"Class %d: Total = /d Correct = %d
Percent = %.2f \n",x,count2(x],counti(x],percentage);
}
fprintf (out_ptr,"Total Number of Classified Right = %d
\n\n", total);
percentage = ((float)total / (float)test_vectors)*100;
printf ("\n\n Total Test Vectors = %d", test_vectors);
printf ("\n\n Total Classified Right = jd", total);
fprintf (out_ptr,“Percentage Right = %.2f \n", percentage);
printf ("\n\n Percentage Right = %.2f ", percentage);
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/*******#******#t#*#************

* Disconnect EMB
T r T T T T T T T I T Y

printf("\n Disconnect EMB");
disconnect_emb();

fclose (in_ptr);

fclose (out_ptr);

printf ("\n\n Press any key to continue...");
getch();
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